ПРАКТИЧЕСКА
РЕФРАКЦИЯ
1. The Publication and all its content is the property of ESSILOR ACADEMY EUROPE, its affiliates, or other third parties holding the relevant right (“Licensors”) and is protected by copyright, trademark and other intellectual property laws. No right or licence can be granted for any of the aforementioned elements without the written agreement of ESSILOR ACADEMY EUROPE, its affiliates or Licensors. Although ESSILOR ACADEMY EUROPE makes the Publication information freely accessible, ESSILOR ACADEMY EUROPE does not intend to give up its rights, or anyone else’s rights, to the Publication and any materials appearing therein.

2. ESSILOR ACADEMY EUROPE accepts to grant a non exclusive, non transferable license to use the Publication upon the General Conditions set forth hereinafter to the Licensee, provided that such Licensee has:
 a. recorded its name, e-mail address and other personal details and
 b. has hereby expressly accepted the present General Conditions of Use, as a condition precedent to downloading the Publication on ESSILOR ACADEMY EUROPE web site.

3. The Licensee acknowledges that ownership of and title in and all intellectual property rights in the Publication are and shall remain in ESSILOR ACADEMY EUROPE its affiliates or Licensors. The Licensee acquires only the right to use the Publication and does not acquire any ownership rights or title in or to the Publication and any materials appearing therein.

4. The reproduction or downloading of the Publication is authorised solely for informational purpose in the context of personal and private use, any reproduction and use of copies made for any other purpose is expressly prohibited.

5. The Licensee may not reproduce the Publication or any part thereof without ESSILOR ACADEMY EUROPE’s consent. The Licensee may not use any trademark, service mark or other intellectual property appearing in the Publication, or frame or incorporate into another document or other medium any of the content of the Publication, without the prior written consent of ESSILOR ACADEMY EUROPE.

6. The Licensee is not authorised to modify the Publication without ESSILOR ACADEMY EUROPE’s prior written approval.

7. The Licensee shall not copy nor translate in whole or in part the content of the Publication without the express written consent of ESSILOR ACADEMY EUROPE.

8. The Licensee shall not remove any proprietary, copyright or trademark legend from the Publication.

9. As a condition for the use of the Publication, the Licensee warrants to ESSILOR ACADEMY EUROPE that he/she will not use the Publication for any purpose that is unlawful or prohibited by these terms, conditions and notices.

10. The Publication is provided on an “As Is basis”:
 a. The Licensee acknowledges that no representation or warranty, express or implied, is made by ESSILOR ACADEMY EUROPE with respect to the truth, accuracy, sufficiency, absence of defect or infringement of third parties rights, completeness or reasonableness of the Information displayed in the Publication
 b. If the Licensee is dissatisfied with any of the contents of the Publication, or any of these terms of use, the Licensee’s sole and exclusive remedy is to discontinue using the Publication.

11. APPLICABLE LAW
 THESE GENERAL CONDITIONS OF USE ARE GOVERNED BY, INTERPRETED AND CONSTRUED IN ACCORDANCE WITH THE LAWS OF FRANCE, BY THE FRENCH COURTS ATTACHED TO THE PARIS COURT OF APPEAL.
СЪДЪРЖАНИЕ

Въведение

стр. 5

I Еметропия, Аметропия, Пресбиопия и тяхната корекция

A Еметропия

стр. 6

B Аметропия

стр. 7

1) Миопия

2) Хиперметропия

3) Астигматизъм

C Близко зрение, Акомодация и Пресбиопия

стр. 9

Допълнение: Оптични принципи на корекцията на Аметропия и Пресбиопия

стр. 10

Допълнение: Оборудване

стр. 12

II Първоначален преглед

A Предистория на случая

стр. 13

B Първоначални изследвания

стр. 14

Dопълнение: Зрителна острота

стр. 17

III Обективна рефракция

A Авто-рефрактометрия

стр. 19

B Ретиноскопия

стр. 20

IV Субективна рефракция – Далечно зрение

A Определяне на сферата

стр. 22

B Определяне на цилиндъра

- използване на обективната рефракция или предишно предписание като отправна точка

стр. 24

- без предварителни данни за рефракцията

стр. 26

Допълнение: Преценка за рефрактивна грешка според нивото на некоригирано далечно зрение, Кръстосан цилиндър на Джаксън, Духромен тест, Pinhole тест

стр. 30

C Бинокулярен баланс

стр. 32

D Финална проверка на бинокулярната сфера, субективното възприятие и комфорт (включително скрининг на бинокулярно зрение)

стр. 34

Copyright © ESSILOR ACADEMY EUROPE, 13 rue Moreau, 75012 Paris, France - All rights reserved- Do not copy or distribute
СЪДЪРЖАНИЕ

V Субективна рефракция – Близко зрение

A Определяне на добавката за близко зрение (Пресбиопия) стр. 37
1) Метод на акомодационния резерв
2) Метод на минималната добавка
3) Метод на бинокулярен фиксиран кръстосан цилиндър
Допълнение: Последици от предписването на завишена добавка за близо стр. 40
B Проверка на Бинокулярния баланс при близко зрение стр. 42
C В случай на пациент, който не е пресбиоп стр. 43

VI Оценка на бинокулярното зрение

A Фория, фузионни резерви и тропия стр. 44
B Идентифициране на проблема стр. 46
C Предписване на призма стр. 50
Допълнение: Сумиране, измерване и определяне на призмата стр. 51

VII Рецепта (Финално предписание) стр. 52
Заключение стр. 54
Въведение

Прецисното определяне на рефракцията е съществена предпоставка за осигуряване на ясно и комфортно зрение за пациента. Винаги трябва да се обръща особено внимание на неговата преценка.

Този труд от серията издания по офталмологична оптика на Essilor, изследва рефракцията от практическа гледна точка. Той представлява кратко резюме на няколко проци и доказани техники, избрани от големия брой налични методи. Неговата цел не е да се занимава изчерпателно с този въпрос, а по-скоро да представи някои основни принципи за рефракция, които са полезни за практикуващите очни специалисти. Изданието е разработено в отговор на многобройните запитвания от специалисти в страни, където практикуването на рефракция бързо се разраства. Основната цел на този труд е да помогне на очните специалисти да работят със своите пациенти и да отговорят на техните нужди от грижа за очите, с надеждата, че по този начин ще може да се повиши нивото на удовлетворение на клиентите и на практикуващите.
Роговицата и вътрешната леща са двата основни елемента за преучуване на светлината на човешкото око. Роговицата осигурява приблизително две трети, а лещата една трета от общата рефрактивна сила на окото. Изображението на наблюдавания обект трябва да бъде фокусирано върху ретината, за да може да се вижда ясно. Изображението е обърнато с главата надолу върху ретината.

Когато окото не е на фокус, зрението е замъглено. Може да има различни причини, поради които дадено око не фокусира правилно и наистина причините, поради които човек развива рефрактивна грешка, са много и зависят от различни фактори. Но без значение какво е причината, крайният резултат е, че има несъответствие между силата на оптичните елементи на окото и позицията на ретината (т.е. дължината на окото). Окото има рефрактивна грешка и зрението не е на фокус, когато изображението, формирано от преучуващите компоненти на окото, се намира пред и/или зад ретината, а не точно връху нея.

A Еметропия

Окото като оптична система:

Неакомодираното еметропно око може да се моделира като оптична система, съставена от роговица, водниста течност, кристална леща и стъкловидно тяло. Характеристиките на такава теоретична система (наричана схематично окото) са показани в таблицата по-долу:

| Обща дължина на окото: 24.09 мм |

<table>
<thead>
<tr>
<th>Елемент</th>
<th>Дебелина (мм)</th>
<th>Коефициент на преучуване</th>
<th>Радиус на извивка на предна повърхност (мм)</th>
<th>Радиус на извивка на задна повърхност (мм)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Роговица</td>
<td>- (единична повърхност)</td>
<td>-</td>
<td>7.80</td>
<td>-</td>
</tr>
<tr>
<td>Водниста течност</td>
<td>3.60</td>
<td>1.336</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Кристална леща</td>
<td>3.70</td>
<td>1.422</td>
<td>11.00</td>
<td>-6.48</td>
</tr>
<tr>
<td>Стъкловидно тяло</td>
<td>16.79</td>
<td>1.336</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Опострено око може да се получи (фигура 2) чрез опростяване на този модел по следния начин: (I) комбинираме елементите, които съставляват окото, (II) разглеждаме роговицата и лещата като тънки лещи (за разлика от дебели лещи), (III) използваме един и същ индекс n = 1.336 за водното и стъкловидното тяло и (IV) закръгляваме изчисленията. Това опострено око има оптическа сила обща 60 диоптъра, то е дълго 24 мм и се състои от прозрачна сферична стъкловидна сила от 42 диоптъра (роговицата), отделяща въздуха от водното тяло и тънка леща с оптическа сила от 22 диоптъра (лещата), отделяща водното тяло от стъкловидното тяло, разположено на 5.8 мм зад роговицата. Впреки че е крайно опострено, този модел е все пак приемливо оптично изображение на човешкото око (в неакомодирано състояние).
В Аметропия

За око, което не фокусира правилно (т.е., когато образът на отделен обект не се формира върху ретината на неакомодираното око), се казва, че има рефрактивна грешка или аметропия (от гръцки означава непропорционално око). Различните видове аметропия се класифицират в три категории: миопия (късогледство), хиперметропия (далекогледство) и астигматизъм.

1) Миопия (Късогледство)

Миопия е състоянието на рефрактивна грешка, при което образът на една точка от безкрайността се формира върху ретината (в отпуснато състояние) пред ретината. Думата миопия идва от латински myopia и гръцки muôps и означава човек, който свива очи (присвива очи или се взира). Човек с некоригирано късогледство вижда отдалечените обекти замъглено, но може да вижда близките обекти ясно (т.е. „гледа” на „къси” разстояния).

Оптически погледнато, късогледото око притежава прекалено голяма пречупваща сила в сравнение с дължината му. Това можем да класифицираме така: или че окото е твърде дълго, в сравнение с неговата пречупваща сила (аксиална миопия), или че окото е прекалено силно в сравнение с неговата дължина (рефрактивна миопия).

Късогледството се коригира чрез използването на минусова (разсейвателна) леща, така че да се позиционира върху ретината.

2) Хиперметропия (Далекогледство)

Хиперметропия (или хиперопия) е състоянието на рефрактивна грешка, при което изображението на наблюдаван обект от безкрайността се формира от около (в отпуснато състояние) зад ретината. Думата хиперметропия идва от гръцкото hyper = отвъд (измерване) и ops = око.

Оптически погледнато, далекогледото око притежава недостатъчна пречупваща сила в сравнение с дължината му. Това можем да класифицираме така: или че окото е твърде късо, в сравнение с неговата пречупваща сила (аксиална хиперметропия), или че окото не е достатъчно силно в сравнение с неговата дължина (рефрактивна хиперметропия).

Далекогледството се коригира чрез използването на плюсова (събирателна) леща, така че да се премести изображението напред и да се позиционира върху ретината.
3) Астигматизъм

За едно око се казва, че е астигматично когато неговата оптическа сила на пречупване, а оттам и на фокусиране, е различна в различните му меридиани. По този начин окото притежава асиметрична аметропия с различни фокусни позиции в различни равнини. Например, човек с астигматизъм, който гледа главната буква E, може да види вертикалната линия ясно, но хоризонталните линии да са замъглени.

В едно око с астигматизъм винаги има един меридиан с максимална сила на пречупване и друг меридиан с минимална сила на пречупване; те се наричат основни меридиани. Между тях силата на пречупване варира между максималните и минималните граници.

Когато астигматизмът е правилен, основните меридиани са перпендикулярни помежду си (т.е. на 90 градуса един спрямо друг) и силата на пречупване варира равномерно. Когато астигматизмът е срещу правилото, най-силният меридиан е близо до вертикалата и силата на пречупване варира неравномерно.

Казва се, че астигматизмът е по правилото, ако най-силният меридиан е до 90° и 270°, а астигматизмът е срещу правилото, ако най-силният меридиан е до 0° и 180° или до 90° и 270°. Астигматизмът може да е правилен, срещу правилото или кос (како съществен астигматизъм). Разликата между силата на пречупване в максималния и минималния меридиан компенсира астигматизма на окото.

Оптичната система на астигматично око образува комплексен образ на светлинен лъч на дадена обективна точка. Този лъч се характеризира с два малки линейни фокуса, по един в близост до вертикалата (т.е. разположен между 70° и 110°). Казва се, че астигматизмът е във фокус на най-добро видение. Ако астигматизмът е нито по правилото, нито срещу правилото, то се казва, че е кос.

Оптичната система на астигматично око образува комплектен образ на светлинен лъч на дадена обективна точка. Този лъч се характеризира с два малки линейни фокуса, по един в близост до вертикалата (т.е. разположен между 70° и 110°). Казва се, че астигматизмът е във фокус на най-добро видение. Ако астигматизмът е нито по правилото, нито срещу правилото, то се казва, че е кос.

Оптичната система на астигматично око образува комплектен образ на светлинен лъч на дадена обективна точка. Този лъч се характеризира с два малки линейни фокуса, по един в близост до вертикалата (т.е. разположен между 70° и 110°). Казва се, че астигматизмът е във фокус на най-добро видение. Ако астигматизмът е нито по правилото, нито срещу правилото, то се казва, че е кос.

Принципът на корекция на астигматичното око е да се използва леща с променлива сила, така че да се промени позицията на образа върху ретината. Силата на тази леща варира в зависимост от местоположението на двата основни фокуса (тоест, силата на пречупване на максималния и минималния меридиан на пречупване):
Близко зрение, Акомодиция и Пресбиопия

Когато даден наблюдаван обект се доближава до окото, образът на този обект би се проявило по-надалеч зад ретината, освен ако пречупващата сила на окото не се увеличава, така че да задържи изображението върху ретината. Окото има капацитет да увеличава общата си сила и това се постига чрез промяна на повърхностните извивки, дебелината и положението на очната леща. Този процес е явлениято, наречено акомодация.

Амплитудата на акомодация е обхватът, в който окото може да фокусира. Тя представлява разстоянието между най-отдалечената обективна точка, която може да бъде видяна ясно, без акомодация (Далечната точка или Punctum Remotum) и най-близката обективна точка, която може да бъде видяна ясно с максимална акомодация (Близката точка или Punctum Proximum). При емметропното око този акомодационен диапазон се простря от безкрайността до близката точка (което е ограничено разстояние). При късогледно око диапазонът е реален и се намира изцяло на ограничено разстояние пред окото. При хиперметропното око акомодационният диапазон е едновременно частично виртуален (зад окото) и частично реален (пред окото) или изцяло виртуален.

Стояността на амплитудата на акомодация определя най-близката точка, при която един обект може да бъде видян, и за която окото може да формира ясно изображение върху ретината. Амплитудата на акомодация (максимум) е приблизително 20 дипотъра при раждане (съответстващи на близката точка на ~5 см), >10 дипотъра (~10 см) на 20 годишна възраст, не повече от няколко дипотъра на възраст 40 години (~35 см), с общ загуба на акомодация на възраст около 50 години (в зависимост от различни фактори). Таа загуба на способността на окото да акомодира се нарича пресбиопия.

Пресбиопия

За едно око се казва, че има пресбиопия (от гръцки се получава старо око), когато формата и позицията на неговата леща вече не са в състояние да се променят в достатъчна степен, за да даде достатъчно увеличение на силата на пречупване на окото за формирането на ясно изображение на близки предмети върху ретината, т.е. когато амплитудата на акомодация е недостатъчна за близки зрители нужди. Ако се остави некоригирана, пресбиопията ще бъде причина близките обекти да се виждат замъглено.

Принципът на корекция на пресбиопията е да се допълни недостатъчната амплитуда на акомодация (при близко зрение) с помощта на плюсова леща. Тази леща, която е в допълнение към всеки кръг акомодация на емметропия, се нарича добавка за близо, или по-просто само добавка (add). По този начин:

- емметропно око с пресбиопия се коригира чрез нулева (plano) леща за далечно разстояние и плюсова леща за близо;
- късогледно око с пресбиопия се коригира чрез минусова леща за далечно разстояние и леща, която е "по-малко минус" за близо (това може да означава, че корекцията за близо може да бъде минус, plano или дори плюс, в зависимост от нивото на късогледство и добавката);
- хиперметропно око с пресбиопия се коригира чрез плюсова леща за далечно разстояние и по-сила плюсова леща за близо.

Фигура 6: Близко зрение

Фигура 7: Акомодация и Пресбиопия

Copyright © ESSILOR ACADEMY EUROPE, 13 rue Moreau, 75012 Paris, France - All rights reserved- Do not copy or distribute
Оптични принципи на корекцията на Аметропия и Пресбиопия

Принцип за корекция на Миопия и Хиперметропия

Основният оптичен принцип за корекция на аметропия е използването на леща с цел да се формират оптични изображения на обекти (които се виждат замъглено от некоригираното аметропно око), така че аметропното око да може да ги види ясно. По-конкретно, корекцията се състои в проекцията на оптични изображения на обекти, които се възприемат замъглено без корекция в пространството, което се вижда ясно от аметропното око.

По-специално, за да се възстанови аметропното око до положението на емтропно око, корекцията се осъществява с леща, формираща образа на далечен обект в точката, която аметропното око вижда ясно без акомодация, тоест в неговата далечна точка. Щър като изображението надалече, образувано от лещата, е по дефиниция разположено в нейната фокална равнина на изображение, принципът на корекция на аметропното око е да се определи силата на корекция, така че вторият основен фокус на лещата да съвпада с далечната точка на аметропното око, което подлежи на корекция.

В случай на късогледо око (Фигура 8 а), образът на даден обект, намиращ се в безкрайността, се формира върху (виртуалния) фокус на изображение на минусовата леща. Този образ се превръща в обект за окото, който поради това, че се намира в далечната точка, се проектира ясно върху ретината.

Фигура 8: Принципи на корекцията на Аметропия

a) Късогледо око

b) Далекогледо око

Принцип за корекция на Астигматизъм

Принципът на корекция на астигматичното око е да се въведе астигматична леща със сила, която варира в зависимост от различните меридиани, така че да противодейства на астигматизма на окото. Тази леща, наречена сферо-цилиндрична, има различна оптична сила по своите максимален и минимален меридиан (цилиндър), която компенсира астигматизма на окото чрез сливане на двата линейни фокуса в една фокусна точка и сферичен диоптър, който връща това изображение върху ретината.

Фигура 9: Принципи на корекцията на Астигматизма

a) Ефект на цилиндричния елемент на корекцията

b) Ефект на сферичния елемент на корекцията
Оптични принципи на корекцията на Пресбиопия

В едно аметропно око, коригирано с диоптрична леща, могат да бъдат разграничени две оптични пространства, възстановени на аметропното око от неговата рефрактивна корекция и в което съществуват физическите обекти, които около вижда. Това е обективното пространство на лещата.

Възприемането на далечните обекти като реални се определя от фокалната точка, а възприемането на близките обекти като виждане възстановено на аметропното око от неговата рефрактивна корекция и в което съществуват физическите обекти, които около вижда. Това е обективното пространство на лещата.

Всяко оптично пространство се простира реално или виртуално до безкрайност, като едно от близките обекти се вижда възстановено на реалното пространство. Възприемането на близките обекти като реални се определя от фокалната точка, а възприемането на далечните обекти като реални се определя от реалното пространство. Образът на близките обекти се вижда възстановен на реалното пространство, а образът на далечните обекти се вижда възстановен на реалното пространство. Образът на близките обекти се вижда възстановен на реалното пространство, а образът на далечните обекти се вижда възстановен на реалното пространство. Образът на близките обекти се вижда възстановен на реалното пространство, а образът на далечните обекти се вижда възстановен на реалното пространство. Образът на близките обекти се вижда възстановен на реалното пространство, а образът на далечните обекти се вижда възстановен на реалното пространство.
За да се извършва рефракция, се изисква подходящо оборудване и съоръжения.

За предпочитане е мястото, което ще ползваме, да бъде обособено помещение, специално предназначено за очни прегледи, намиращо се в тих и спокоен район, далеч от другите дейности на кабинета или магазина, за да се гарантира конфиденциалността на личния живот на пациента и да се улесни концентрацията. Осветлението на помещението трябва да е средно ярко, за да съответства на стандартните условия на зрение. Важно е да се избегне извършването на очни прегледи в условия на ниска осветеност (освен ако не се изисква определено изследване). Изисква се разстояние от 4 до 6 м (в зависимост от страната), на което може да бъде разположена зрительната таблица за тестване на далечното зрение. Това разстояние може да бъде получено директно или чрез използването на отражение в огледало. Тестовите таблици трябва да бъдат разположени на височината на очите на пациента (така, че пациентът да гледа на далеч при първ поглед).

Минимум необходимо оборудване:

- Таблица за зрителна острота (ЗО) (за далечно разстояние) (включително таблица за ЗО за деца (с обръщащи редове, съвпадащи карти и т.н.), както и за пациенти със затруднения в общуването (например, таблица за неграмотни с Е, С на Ландлот, съвпадащи карти)
- Карта за четене за ЗО (за близко разстояние)
- Пробен комплект (пробна рамка и комплект пробни лещи, ръчен фороптер или автоматизиран фороптер)
- Кръстосан цилиндър/дри на Джаксън (ръчен или като част от фороптер)
- Оклудер
- Подходящо ниво на осветление (за тестване на далечното зрение, както и за оценка на близкото зрение)
- Оборудване, свързано с обективния метод за измерване на рефракция (ретиноскоп или авто-рефрактометър)
- Диоптромер за измерване силата на диоптъра на настоящите очила

Освен това основно оборудване, могат да бъдат добавени допълнителни подобрения, включително: ролетка (за измерване на разстоянието за четене, тестовото разстояние, близката точка на акомодация и т.н.), флипер (например +/- 0.25D, +/- 0.50D, +/- 1.00D, +/- 2.00D и база с/без призма), фенерче-писалка, червен филтър, поляризирящи лещи, призматични линийки, стереоскопичен тест, препарати за циклоплегия при ретиноскопия, когато е необходимо и подходящо, и контрастен тест на чувствителността.

От само себе си се подразбира, че използването на тези различни инструменти е ограничено до очните специалисти с необходимото ниво на квалификация и умения, в съответствие с действащите разпоредби във всяка страна.
За да започне всеки преглед на зрението, е необходимо да се направи преглед на историята на състоянието на пациента. Това е необходимо, за да се разберат симптомите, които са мотивирали пациента да потърси консултация, както и какви са неговите зрителни нужди. Обобщението на тази информация е ценно и ще даде възможност на очния специалист да извърши очния преглед последователно, както и да разбере, преди започване на прегледа, най-вероятните причини за симптомите (например, вида на рефрактивна грешка).

На първо място е важно да бъдат разбрани причините за консултация, като зададем на пациента няколко отворени въпроса като „Какво е причината за Вашето посещение?”, „Какъв според вас е проблемът?“ или „Какви зрителни проблеми имате?“

След това задайте допълнителни въпроси, за да уточнете зрителния проблем. Например:
- Какво е естеството на проблемата: зрителна умора, замъгление, двойно виждане, дълбък или близък вибрациона ефект, при сфериране?
- Времето и честотата на възникване: сутрин, вечер, социално или вярна след продължителен период на четене?
- Условията на осветеност: на сила светлина, при ниска осветеност, при нощно гледане, чувствителност към отблъскване?
- Датата и начина на възникване: кога се е случило това, преди първо път ли се е случило, възможно или постепенно е започнало?
- Времето на поява и същността на проблемата: има ли следващо подобряние или влошаване на проблема, какви решения е намерили пациентът за облекчаване или влошаване на състоянието?
- И т.н.

По време на този разговор, отговорите на пациента могат да бъдат препоръчани за да си гарантираме, че са били правилно разбрани. Ако е необходимо, задайте няколко затворени въпроса или предложете примери, за да изяснете отговорите на пациента.

В допълнение към личните данни на пациента (име, дата на раждане, и т.н.), трябва да отбележите зрителната история и по-специално всички подробности за предишните очила на пациента. Това може да се направи по данни от предишното досие на пациента, информация, предоставена от пациента или чрез измерване на предписанието, което пациентът носи в момента. Това може да се направи и след визуално разпределение на рефракцията; за предпо̀ченто е след, та̀ко че да се избегне потенциалното влияние на бъдещата състояние на пациента. Това може да се направи и след извършване на анализите на пациента, които пациентът носи в момента.

И последно, важно е също така да разберете как и кога пациентът ще използва новите си очила; по-специално, за какви професионални или развлекателни дейности. Отново, това трябва да стане как задаването на няколко въпроса, като например:
- Във връзка с професионалните дейности: описанието на дейността или дейностите, необходимо работно разстояние(я), позиция на работа (например: на, над или под нивото на очите, непосредствено пред или встри на огледало), осветление, обстановка, необходима степен на изследване, продължителност на задачите и т.н.
- Във връзка с дейностите от свободното време: вид (ове) спорт, четене, занимания от типа направи си сами и за дома, сфериране, гледане на телевизия, слушане на музика, рисуване, шитие и т.н.

Идеалният вариант е, за различните конкретни случаи, да бъдем в състояние да симулираме зрителните условия на най-често срещаната ситуация от страна на пациента, така че да бъдем сигурни, че предписаната зрителна корекция е възможно най-подходяща.

Фигура 12: Първонаначален разговор: Изключителна важност на първия контакт

И следва да се разбере как и кога пациентът ще използва новите си очила; по-специално, за какви професионални или развлекателни дейности. Отново, това трябва да стане как задаването на няколко въпроса, като например:
- Във връзка с професионалните дейности: описанието на дейността или дейностите, необходимо работно разстояние(я), позиция на работа (например: на, над или под нивото на очите, непосредствено пред или встри на огледало), осветление, обстановка, необходима степен на изследване, продължителност на задачите и т.н.
- Във връзка с дейностите от свободното време: вид (ове) спорт, четене, занимания от типа направи си сами и за дома, сфериране, гледане на телевизия, слушане на музика, рисуване, шитие и т.н.

Идеалният вариант е, за различните конкретни случаи, да бъдем в състояние да симулираме зрителните условия на най-често срещаната ситуация от страна на пациента, така че да бъдем сигурни, че предписаната зрителна корекция е възможно най-подходяща.
Първата стъпка във всеки преглед на зрението е да се извършат определен брой прости предварителни измервания. Практикуващият трябва вече да има представа за рефракционния статус на очите на пациента благодаря на предишното или на неговото стъпка. Освен това, тези измервания ще помогнат за идентифициране за различия между очите на пациента и потвърждаване на наличие на зрелен проблем при пациента. Те също така предоставят възможност за наблюдене по-отблизо на поведението на пациента.

Започнете с оценка на нивото на далечно зрение на пациента (първо без, а след това с текущата корекция; най-напред с едното око, а след това с двете очи). След това направете оценка на неговото поведение и възможност за четене на близко разстояние. След това проверете кое е доминантното око и накрая направете проверка за бинокулярни аномалии на зрителното поле.

Далечното зрение

Далечното зрение на пациента обикновено се измерва с помощта на стандартна остроност на зрителната остра. Последните измервания са направени на разстояние от 4 до 6 м, първоначално без, след това с корекция, най-напред с едното око, а след това с двете очи. Опитът често са склонни да спрат да четат още първия път щом срещнат проблем с разчистването на буквите. Важно е да ги насърчим да продължат, например като им зададем въпроса: „А какво можете да разчетете на следващия ред?“

Нивото на постигнато зрение може да се разграничи като най-малки дребни букви, в който три от четири буквите (или окофили) са правилно разпознати. Като допълнителен метод, на фона на единичен логаритъм се коефициентно страдание от пет букви на ред и общата прогресия на размера между отделните редове, всяка правилно прочетена буква може да бъде отбелзана; всяка правилно прочетена буква се оценява с 0.02 единици по logMAR, като се започва от logMAR 1.0 (0.1 десетичен) ред.

Има много разнообразни таблици за измерване на зрителната остра, както и множество различни методи за оцениване на зрителната остра. За класификацията в международния масштаб, е този документ, че се използва допълнителна броен системи. (Моля, вижте допълнението «Зрелна острота» на този документ, за улеснение при международен обмен на информация.) Оцениваният метод на измерване на близката остра на пациента (точка на възстановяване на зрението) трябва да се извърши с помощта на единичен логаритъм, като върху първия ред вижда дълбоко разстояние, пациентът трябва да бъде насърчен да продължат, например като им зададем въпроса: „А какво можете да разчетете на следващия ред?“

Важно е да ги насърчим да продължат, например като им зададем въпроса: „А какво можете да разчетете на следващия ред?“

- Близката точка на акомодация: придвижвайте много малка цеп (например огледало или текст с дребен шрифт) към пациента (който е с очилата си за корекция на далечно разстояние), докато той вече не може да я вижда ясно. Отбележете разстоянието. След това, започнете да отдалечавате цепта от пациента до момента, в който той може отново да я вижда ясно. Отбележете разстоянието. Тези две позиции трябва да се различават с повече от 1 или 2 см. Това измерване трябва да се извършва най-напред с едното око, а след това и с двете очи. Това е особено полезно при пациенти с начална пресбиопия за оценка на акомодационна дисфункция и при пациенти с анизометропия за демонстриране на акомодативните различия между двете очи. (Остъклата акомодация (в диоптри) може да бъде оценена по този метод через приближаване (Push Up метод), тъй като тя в противоположна на най-близкото разстояние (в метри), при което пациентът все още може да вижда ясно (което означава, близката точка на акомодация). Измерването на дебелината на акомодация по този метод е просто, но не е най-точният метод за отчитане на реалната амплитуда на акомодация. Въпреки това, за практически цели и за този документ той е достатъчен и дава добра работа индикация за акомодационната способност на пациента.)

- Близката точка на конвергенция: има ли пациентът способността да фокусира върху малка цеп, като например върху химикалка или дребен шрифт (с двете очи едновременно отворени). Бавно придвижвайте цепта по-близо до носа на пациента, докато той започне да вижда две точки вместо една (двойно виждане) и/или забележите, че едно от очите на пациента губи фокус (тоест, се отклонява). Отбележете това разстояние (точка на разделяне) и око кое око се отклонява. Това е особено полезно при пациенти с начална пресбиопия за скрининг на конвергенционна недостатъчност.

Акомодативна и конвергенционна функция

От съществено значение е да се провери акомодативната и конвергенционна функция на пациента на близко разстояние. За да направите това, определете:

1.0 (0.1 десетичен) ред.

- Близката точка на акомодация: придвижвайте много малка цеп (например огледало или текст с дребен шрифт) към пациента (който е с очилата си за корекция на далечно разстояние), докато той вече не може да я вижда ясно. Отбележете разстоянието. След това, започнете да отдалечавате цепта от пациента до момента, в който той може отново да я вижда ясно. Отбележете разстоянието. Тези две позиции трябва да се различават с повече от 1 или 2 см. Това измерване трябва да се извършва най-напред с едното око, а след това и с двете очи. Това е особено полезно при пациенти с начална пресбиопия за оценка на акомодационна дисфункция и при пациенти с анизометропия за демонстриране на акомодативните различия между двете очи. (Остъклата акомодация (в диоптри) може да бъде оценена по този метод через приближаване (Push Up метод), тъй като тя е противоположна на най-близкото разстояние (в метри), при което пациентът все още може да вижда ясно (което означава, близката точка на акомодация). Измерването на дебелината на акомодация по този метод е просто, но не е най-точният метод за отчитане на реалната амплитуда на акомодация. Въпреки това, за практически цели и за този документ той е достатъчен и дава добра работа индикация за акомодационната способност на пациента.)

- Близката точка на конвергенция: има ли пациентът способността да фокусира върху малка цеп, като например върху химикалка или дребен шрифт (с двете очи едновременно отворени). Бавно придвижвайте цепта по-близо до носа на пациента, докато той започне да вижда две точки вместо една (двойно виждане) и/или забележите, че едно от очите на пациента губи фокус (тоест, се отклонява). Отбележете това разстояние (точка на разделяне) и око кое око се отклонява. Това е особено полезно при пациенти с начална пресбиопия за скрининг на конвергенционна недостатъчност.

Акомодативна и конвергенционна функция

От съществено значение е да се провери акомодативната и конвергенционна функция на пациента на близко разстояние. За да направите това, определете:
Разстояние за четене

Важно е да се знае какво е обичайното или необходимото работно разстояние на пациента. То може да се различава значително при един или друг човек. Например: близка прецизна работа на разстояние 25 см, работа при различни позиции на компютърния екран или конкретни задачи като четене на нотни листове. Зрителната среда също може да варира в широки граници. Ето защо е важно да разберете напълно основните задачи на близко разстояние на пациента, като поискахте подробни описания или дори симулации. По този начин, ще можете да приспособите тяхната зрительна корекция така, че да отговоря на техните нужди.

Разстоянието за четене варира в съответствие със задачите и навиците на пациента, а често понякога зависи и от физическата му размер. За да проверите обичайното разстояние за четене на пациента, помолете го да постави картата за тест на четенето на разстояние, на което той се чувства комфортно. Измерете разстоянието от около до теста. Това разстояние обикновено е сравнимо с Разстоянието на Хармън - разстоянието от лакътя до върха на показалеца, когато той се движи в ладонта му (вж фигура 13). Това е референтна стойност за измерването, която обикновено представлява разстоянието за четене или писане, при което човек трябва да може да чете комфортно. Наблюдавайте дали пациентът нормално чете на, по-близо или по-далеч от това разстояние. Това може да предостави допълнителна информация по отношение на нивото на зрението на пациента (слабо или добро), ако съществените разностъпки се допълват и със спецификци на бинокулярното поведение. И най-накрая, по време на този тест проверете дали пациентът поставя текста централно пред очите си или има тенденция да го отмества надясно или наляво.

Доминантно око

Преди да пристъпите към рефракция, било полезно да знаете кое от двете очи на пациента е доминантното око. Точно както всички ние използваме предимно дясната или левата си ръка, така и всички ние обикновено имаме предпочитание към едното око. Използвайте CheckTest™ (фигура 14), за да определяте кое е доминантното око на пациента. Накарайте пациента да задържи CheckTest™ на една ръка разстояние и да го докосва през теста с отворени двете очи, поставена на далече разстояние. Закрийте едно от очите на пациента и го накарайте да сравни положението на целта в рамките на отвора на CheckTest™. Доминантното око е това, за което целта остава в центъра на отвора, когато другото око е закрито. Доминантното око може да съответства или да не съответства на доминиращата ръка на пациента. Знанието за това кое е доминантното око има трикратен интерес:
- Някои смятат, че е за предпочитане да започнат рефракцията с не-доминантното око, така че пациентът да може да се “упражни” преди определянето на рефракцията на доминантното око;
- По време на бинокулярния баланс, ако не може да се получи перфектен баланс, доминиращото око трябва да бъде предпочетено;
- По време на предписване, центрирането на лещите може да се адаптира към екстериална дисторсионна латерализация, тъй като това може да окаже влияние върху позицията на главата и очите на пациента, когато гледа, особено на близко разстояние.

Фигура 13: Разстояние за четене и Разстояние на Хармън

Фигура 14: Определение на доминантното око (с помощта на CheckTest™)
Проверка за аномалии на бинокулярното зрение

Могат да бъдат проведени следните тестове:

- **Проверка на фузията с помощта на червен филтър:** Целта е да се оцени нивото на бинокулярна фузия на пациента чрез частично разграничаване на образите от двете очи. Навъртайте пациента да гледа в една далечна осветена точка (например фенерче писалка на разстояние 5-6 м). Поставете червения филтър пред едното око. Ако фузията е добра, пациентът ще види само една розова светлина. Ако фузията е слаба и следователно нарушена, пациентът ще види или две светлинни (една бяла и една червена в случай на пълно разграничаване на очите) или една светлина (или бяла, или червена, в зависимост от това, кое око се закрива). Ако закриването е непълно, пациентът може да види една редуваща се светлина, червена и бяла (в зависимост от това, кое око се закрива). Изпълнете този тест чрез поставяне на червения филтър последователно пред всяко око. Светлината точка се възприема като по-тъмно розова (по-червена), когато червеният филтър се поставя пред доминантното око.

- **Скрининг за хетерофория или тропия с Cover Test:** Целта е да се провери дали пациентът има латентно отклонение на зрителните оси, което може да бъде затруднено да компенсира. Навъртайте пациента да се фокусира върху дадена цел (този тест трябва да се извърши както за далечно, така и за близко разстояние). Поставете оклудера пред едното око след това го отстранете (Едностранен Cover Test). Наблюдайте дали и как се движи очите докато са закрити, веднага след като са били открити и докато другото око е закрито. Обърнете внимание на посоката, в която окото (или очите) се отклонява, за да възстановите фиксацията си след като оклудера е бил отстранен. Ако при откриване окото се отклонява (за да се фиксира върху целта), то това може да бъде нозо-темпорална, ортофория или хетерофория. Ако движението е назо-темпорално, пациентът има ортофория. Ако окото не се движи, пациентът има ортофория. Едностранният Cover Test трябва да се извърши чрез последователно закриване първо на едното око, след това на другото око. Повторен Cover Test включва незабавното преместване на оклудера от първото към второто и обратно, преди отстраняване му и приемане на пациента отново към състояние на бинокулярно зрение. Движенията на очите в момента когато са закрити и след отстраняване на оклудера предоставят информация относно наличието на фория и тропия. Следващият тест е важен за диагнозата, тъй като хетерофорията представлява проблем, единствено ако компенсираният и се окаже труден.

Фигура 15: Проверка за аномалии на бинокулярното зрение (с помощта на Cover Test)
Зрителна острота

Зрителната острота е по дефиниция способността на окото да разпознава най-малките детайли на високо контрастен обект, т.е. най-добрата детайлна резолюция, която може да бъде постигната. Тя е определена от холандския офтальмолог Херман Снелен, (1834-1908) като противоположната стойност на ъгъла, изразен в дъгови минути, образуван в окото от най-малкия детайл, който може да бъде разграничен от окото. Човешкото око може да различи средно две точки, разделени с ъгъл на 1 дъгова минута (т.е. 180-та част от един градус). Така остротата на 6/12 (20/40) показва, че пациентът може да прочете на 6 метра (20 фута) винаги, което човек с нормална средна острота на 1,0 може да прочете на 12 метра (40 фута). За същия числител (разстояние на теста) колкото по-голям е знаменателят, толкова по-слаба е зрителната острота. Изчисляването на дребните на Снелен дава десетичното означение (например 6/6 = 20/20 = 1,0).

Условно, височината на оптотипа съответства на пет пъти тази на детайлите, които трябва да бъдат разграничени: дебелината на линиите на буквите и отвора на буквата S означава, например, една пета от общата височина на буквата (оптотипа). Това означава, че височината на оптотила формира ъгъл от 5 дъгови минути в окото. Ширината на буквата може да бъде 4 или 5 пъти по-голяма от размера на оптотипа, което трябва да бъдат разграничени. Съществуват международни стандарти, които предвиждат формат на буквите (например съотношение 5 х 4 и в не-серифен шрифт) и уточняват оптотипите или ограничения набор от букви, които могат да се използват, като това са букви, които имат сходна четимост. Има много видове таблици за зрителна острота:

- В зависимост от вида на използваните оптотипи: букви, цифри, пръстен на Ландолт или S (1888), E на Снелен (1862), рисунки и др.
- В зависимост от прогресията на стойността на остротата: скалите могат да бъдат десетични (Монойе, 1875), ъглови (в дъгови минути (Мерсие, 1944), обратнопропорционални (1/10, 1/9, 1/8 и т.н.), рационални, (т.е. обратнопропорционални за ниските стойности на остротата, след това десетични за високите стойности на остротата (Лисак, 1956 г.)), или логаритмични (Бейли-Лови, 1976). Така логаритмична скала представлява аритметична прогресия с логаритмична стъпка от 0,1 единица от минималния ъгъл на резолюция (MAR). С други думи геометрична прогресия от \(\sqrt{10} = 1.259 \) от MAR. Тази равномерна прогресия на размера на отделните редове от табличата означава, че стойността на ъгъла се намалява наполовина (удовоява) на всеки 2 реда и уточнява (делни) първ 10 на всеки 10 реда. (Например, при нискоходно движение отгоре надолу, от по-големите букви към по-малките, размерът на буквите на всеки трети ред се намалява наполовина и по този начин остротата се удвоява. При възходящо движение от по-малките букви към по-големите, размерът на буквите се удвоява на всеки 2 реда.) Този тип логаритмична таблица предлага равномерна прогресия, гъвкавост на тестовото разстояние, идентичен брой оптотипи и следователно еднаква зрелост на детайлите от всички разстояния и затова се прилага в международен стандарт (фигура 16).

Има създадени много скали за зрелост на острота от различни земни страни. Това не е изчерпателен списък.

Допълнение:

Зрелостта на остротата се измерва като двеста (200) или десетократна (20) на най-малкия детайл на остротата, когато книгата представлява разстоянието на теста, а знаменателят разстоянието съответства на по-малкия детайл на оптотипа формира ъгъл от 1 дъгова минута в окото (това е разстоянието, на което той може да бъде десеткратно разширено от пациент със зрелта острота от 1,0 (референтния етап за средно нормално зрение)). Така остротата на 6/12 (20/40) показва, че пациентът може да прочете на 6 метра (20 фута) това, което човек с нормална средна острота от 1,0 може да прочете на 12 метра (40 фута). За същия числител (разстояние на теста) колкото по-голям е знаменателят, толкова по-слаба е зрелостта на остротата. Изчисляването на дребните на Снелен дава десетичното означение (напрмер 6/6 = 20/20 = 1,0).

Условно, височината на оптотипа съответства на пет пъти тази на детайлите, които трябва да бъдат разграничени: дебелината на линиите на буквите и отвора на буквата S означава, например, една пета от общата височина на буквата (оптотипа). Това означава, че височината на оптотила формира ъгъл от 5 дъгови минути в окото. Ширината на буквата може да бъде 4 или 5 пъти по-голяма от размера на оптотипа, което трябва да бъдат разграничени. Съществуват международни стандарти, които предвиждат формат на буквите (например съотношение 5 х 4 и в не-серифен шрифт) и уточняват оптотипите или ограничения набор от букви, които могат да се използват, като това са букви, които имат сходна четимост. Има много видове таблици за зрелост на остротата:

- В зависимост от вида на използваните оптотипи: букви, цифри, пръстен на Ландолт или S (1888), E на Снелен (1862), рисунки и др.
- В зависимост от прогресията на стойността на остротата: скалите могат да бъдат десетични (Монойе, 1875), ъглови (в дъгови минути (Мерсие, 1944), обратнопропорционални (1/10, 1/9, 1/8 и т.н.), рационални, (т.е. обратнопропорционални за ниските стойности на остротата, след това десетични за високите стойности на остротата (Лисак, 1956 г.)), или логаритмични (Бейли-Лови, 1976).

Тази логаритмична скала представлява аритметична прогресия с логаритмична стъпка от 0,1 единица от минималния ъгъл на резолюция (MAR). С други думи геометрична прогресия от \(\sqrt{10} = 1.259 \) от MAR. Тази равномерна прогресия на размера на отделните редове от табличата означава, че стойността на ъгъла се намалява наполовина (удовоява) на всеки 2 реда и уточнява (делни) първ 10 на всеки 10 реда. (Например, при нискоходно движение отгоре надолу, от по-големите букви към по-малките, размерът на буквите на всеки трети ред се намалява наполовина и по този начин остротата се удвоява. При възходящо движение от по-малките букви към по-големите, размерът на буквите се удвоява на всеки 2 реда.) Този тип логаритмична таблица предлага равномерна прогресия, гъвкавост на тестовото разстояние, идентичен брой оптотипи и следователно еднаква зрелост на детайлите от всички разстояния и затова се прилага в международен стандарт (фигура 16).

Има създадени много скали за зрелост на острота от различни земни страни. Това не е изчерпателен списък.
Таблица за зрителна острота на близо

Ето и най-важните характеристики за различни таблици за зрителна острота на близо. Таблицата показва как можем да измерим зрителна острота за близко разстояние.

Таблица за зрителна острота на близо

<table>
<thead>
<tr>
<th>Височина на символа (мм)</th>
<th>Острота (М)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45</td>
<td>1.0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Методична скала и обозначаване (М обозначаване):

Тази система е разработена от двама американски учени-изследователи - Луиз Слоун и Уолтер Бернард през 1888 г. Размерът на буквите се измерва с помощта на съотношението на разстояние/референтно разстояние с помощта на съотношението на разстояние/референтното разстояние и по този начин позволява зрителната острота за близко разстояние да бъде оценена в съответствие с разстоянието, с помощта на съотношението на разстоянието за четене/референтното разстояние. Референтното разстояние е равно на 5 см х числото на М-единицата.

Ако Р1 се чете от разстояние на 25 см, остротата е 0.45 м / (1 х 0,25 м) = 1.8 (18/20).

• Ако Р1 се чете от разстояние на 20 см, остротата е 0.30 м / (1 х 0,20 м) = 1.5 (15/20).

Съществуват множество различни методи за измерване на зрителна острота за близко разстояние, всеки със различни предимства и недостатъци. Основните методи са следните:

1. **Метрична скала и обозначаване (М обозначаване):** Известна е като скала на Диагар (Diagrap) и е използвана за измерване на зрителна острота за близко разстояние. Размерът на буквите се измерва с помощта на съотношението на разстояние/референтното разстояние и по този начин позволява зрителната острота за близко разстояние да бъде оценена в съответствие с разстоянието, с помощта на съотношението на разстоянието за четене/референтното разстояние. Референтното разстояние е равно на 5 см х числото на М-единицата.

2. **Конкорсна скала и обозначаване на Диагар (Diagrap):** Често се използва със задължителна почистване на линзата на съответните разстояния. Размерът на буквите се измерва с помощта на съотношението на разстояние/референтното разстояние и по този начин позволява зрителната острота за близко разстояние да бъде оценена в съответствие с разстоянието, с помощта на съотношението на разстоянието за четене/референтното разстояние. Референтното разстояние е равно на 5 см х числото на М-единицата.

3. **Скалата на Лидо (Lido):** Известна е като скала на Лидо и е използвана за измерване на зрителна острота за близко разстояние. Размерът на буквите се измерва с помощта на съотношението на разстояние/референтното разстояние и по този начин позволява зрителната острота за близко разстояние да бъде оценена в съответствие с разстоянието, с помощта на съотношението на разстоянието за четене/референтното разстояние. Референтното разстояние е равно на 5 см х числото на М-единицата.

4. **Скалата на Бейли-Лови (Bailey-Lovie):** Известна е като скала на Бейли-Лови и е използвана за измерване на зрителна острота за близко разстояние. Размерът на буквите се измерва с помощта на съотношението на разстояние/референтното разстояние и по този начин позволява зрителната острота за близко разстояние да бъде оценена в съответствие с разстоянието, с помощта на съотношението на разстоянието за четене/референтното разстояние. Референтното разстояние е равно на 5 см х числото на М-единицата.
Започнете проверката на рефракцията чрез определяне на обективната рефракция, наречена така, защото не се основава на каквото и да е информация от пациента. За да се определи обективната рефракция, очният специалист може да използва както техниката, предлагана от авто-рефрактометриите, така и класическата техника на ретиноскопия. Какъвто и да е използваната метод, обективната рефракция винаги трябва да бъде извършвана, но може да представлява само първоначален подход към рефракция, който трябва да бъде потвърден впоследствие през преглед за субективна рефракция. Само при изключителни обстоятелства, когато субективната рефракция е невъзможна, като например при преглед на бебе, малко дете или друг пациент, който не е в състояние да общува, трябва да се използва обективната рефракция за окончателното предписание на рецептата.

А Авто-рефрактометрия

Автоматичната рефрактометрия е бърз и лесен начин за получаване на обективна оценка за рефракцията на пациента.

Пациентът поставя главата си на уреда, подпирайки брадичката и челото на съответните места, така че да бъде неподвижен и след това фиксира поглед върху целта в инструмента, като мига с очи както обикновено. След това Практикуващият премества уреда, докато го центрира върху окото на пациента и докато получи фокусиран образ на около. Когато това е изпълнено, измерването може да бъде направено автоматично или ръчно, в зависимост от избраната техника. Прави се серия от измервания и се изчислява средната стойност. Процесът се повтаря за другото око и след това резултатите могат да бъдат отпечатани.

Повечето авто-рефрактометри работят на принципа на излучването на лъч от инфрачервена светлина. Опто-електронен сензор улавя образа на този лъч след като е бил отразен от ретината и е преминал двукратно през около (при влизане и излизане). Това изображение се обработва и анализира чрез компютърен софтуер и се изчислява средната стойност. Процесът се повтаря за другото око и след това резултатите могат да бъдат отпечатани.

Въпреки постигнатия напредък, авто-рефрактометрите все още не осигуряват напълно надеждно измерване на рефракция. Сферата често е със завишена минусова стойност (с други думи, късогледството се надценява, а далечекосвото се подценява) заради стимулирането на акомодация, когато пациентът гледа във вътрешността на уреда (инструментална миопия). Въпреки че не е желателно по никакъв начин да се подценява приноса на тези инструменти, важно е всичко да се посочи, че измерването с авто-рефрактометър само по себе си е достатъчно, за да се определи рефракцията на пациента, и че когато това е възможно, то трябва винаги да се допълва от субективен преглед.

Фигура 17: Авто-рефрактометър
Ретиноскопията (или скископия, от гръцки skia = сянка и skopein = разглеждам) е техника, която позволява оценка на рефрактивния статус на окото на базата на движението на отразената от окото светлина, наблюдавана с помощта на оптичен инструмент, познат като ретиноскоп. Тя е въведена в края на 19-ти век от Фердинанд Кюине, френски военен офталмолог (1823-1889). Бидейки обективна техника, тя не се нуждае от участие от страна на пациента и затова е полезна като предварителен инструмент за субективна рефракция за всички пациенти, но по-специално за бебета и за тези, които не могат да обсъжат. Тя също така предоставя странична информация за яснотата и правилността/качеството на очната среда, а оттам и за очакваното ниво на зрение.

Ретиноскопията е произлязла от офталмоскопията и е подобна на техниката на ръчно неутрализиране на лещите (и основните принципи на фосиметрията). Светлината от ретиноскопа проблясва в окото на пациента и ретината действа като отражателен екран, върху който светлината се движи. Светлината, отразена от ретината (която сега действа като вторичен източник на светлина) и вече извън окото се нарича "отражение" (както при червеното отражение върху зениците в снимка със светкавица). Ретиноскопът се накланя така, че неговите леки внезапни просветвания да обхванат цялото око. Сравнено с движението на светлината от ретиноскопа, отражението ще се движи в същата посока (по движението) или в обратна посока (срещу движението). Посоката, скоростта и яркостта на отражението са свързани с рефрактивната грешка (колкото по-ярко и по-бързо е отражението, толкова по-малка е рефрактивната грешка).

Наблюдателят оценява формата, движението и яркостта на отражението и поставя подходящите лещи пред окото, докато скоростта на движение на отражението е безкрайно висока ("поворъчна точка"). Силата на лещата, при която се достига до повратната точка е нивото, което неутрализира рефрактивната грешка на окото. В случай на астигматизъм, неутрализацията се определя незavisимо по всеки основен меридиан.

Леща за работно разстояние (обикновено или +1.50D (67 см) или +2.00D (50см)) трябва да бъде поставена пред окото по време на ретиноскопията, за да се отчете факта, че наблюдението се извършва чрез ретиноскоп, който не е в оптична безкрайност. Тази леща за работно разстояние трябва да се разглежда отделно от силата на лещата, при която настъпва неутрализация.

Най-често срещаните вид ретиноскопия е статичната ретиноскопия, както е описана по-горе. В нейните рамки съществуват два различни вида: техника на петно и линия (в зависимост от формата на светлината, която се излъчва от ретиноскопа). Има и други, по-малко използвани техники, чрез които ретиноскопията може да се използва, включително Близка ретиноскопия на Мохиндър и Динамична ретиноскопия, които могат да осигурят оценка на рефракцията и акомодационния статус при близко зрение.

Акомодацията трябва да бъде стабилизирана по време на ретиноскопията и поради тази причина тя се извършва на тъмно и на пациента се дава за наблюдение цел на отделченно разстояние. Размерът на целта е голям, така че да може да се види през размазването, причинено от лещата за работно разстояние. Също така преди извършването на ретиноскопията може да бъде предизвикана циклоплегия и това е особено полезно, когато се оценяват малки деца и пациенти с високо ниво на латентно далекогледство.

Фигура 18: Ретиноскоп
Фигура 19: Различни ефекти на отражение при Ретиноскопия

По посока на движението

Срещу движението

Наклонен / кос ефект

Точка на неутрализация или „повратна точка”

Използването на ретиноскопия изисква опит, който може да бъде придобит единствено чрез редовна практика. Въпреки че техниката изисква повече време, за да бъде овладяна, отколкото при авто-рефрактометрията, тя може да се окаже също толкова ефективна и многократно по-практична.
Субективната рефракция е техника, използвана за определяне на рефрактивната грешка на окото и включва способността на пациента да различава промени в яснотата на наблюдавания обект, когато различни лещи се поставят пред очите му. По дефиниция тя изисква участие от страна на пациента.

Субективната рефракция обикновено се извършва като проверка и „фина настройка“ след първоначалната обективна оценка на рефракцията. Отправната точка може да бъде резултатът от обективната рефракция или данни от предишно предписание. Субективната рефракция се извършва първо поотделно за всяко око (моноокулярно), след това бинокулярно. Препоръчителният ред за изпълнение на субективната рефракция е: моноокулярно определяне на сфера, ос и сила на цилиндър за всяко око, последвано от оценка на бинокулярния баланс. Трябва да се използват минусови цилиндри.

Методът, описан по-долу, е доказан, но е само един от много възможни методи за субективна рефракция.

А Определяне на Сферата

Така нареченият “метод на замъгляването” може да се използва за определение на сфера. Идеята на метода е, че създаденото в началото размазване или “замъгляване” има за цел да постигне “спокойно” състояние на акомодация у пациента. Това може да се постигне, тъй като пациентът ще изпита още по-голямо размазване на образите, ако се опита да акомодира, и така той постепенно отпуска акомодацията, за да минимизира размазването. Методът включва поставянето на (плюсова) леща пред окото на пациента, така че да се премести ретинален образ по-напред пред ретината, което води до замъгляването му, след това постепенно намалява силия на лещата, докато изображението се върне на фокус върху ретината. Определено е, че най-подходящото ниво на замъгляване е да се намери нивото на зрение на пациента до ~0.16 (обикновено ~+1.50DS). Всяко по-голямо замъгляване от това може да предизвика акомодация на тонично ниво, тъй като пациентът създава имитирано размазване на образите, което изисква акомодацията. По-малкото замъгляване може да не успее да контролира достатъчно добре акомодацията.

Сферата се определя най-напред моноокулярно. Много практикуващи изпълняват рефракцията първо на не-доминантното окото, така че пациентът да се свикне с техниката и да сме сигурни, че дава добри отговори за доминантното окото, което тестваме след това.

Този метод е описан по-долу:

1) Поставете лещата за начинна корекция (результатът от обективната рефракция или от предишното предписание) пред около на пациента (закрийте другото око), измерете и запишете стойността на коригираното зрение

2) Замълнете (размажете зрението на пациента) чрез добавяне на +1,50 D (За тази сила на сфера е безопасно да се влоши до ~0.16)
 - Ако сега зрението на пациента е по-добро от 0.16, значи че е недостатъчно замъглено, което означава, че някоя от възможностите за корекция се намира в плоскостта на +0.25D. Допълнително може да се добави някоя от минусовите цилиндри и докато пациентът размазва образите, докато ги върнем на фокус, създаващ към това време нов ниво на замъгляване.
 - Ако сега зрението на пациента е по-слабо от 0.16, това означава, че първоначалната корекция е била със завишен плос или недостатъчен минус. Започнете да намалявате замъгляването постепенно, както е описано по-долу.
2. Продължете да намалявате замъгляването, постепенно на стъпки от 0,25 D (тоест, добавяйте -0.25D за стъпка) и проверявайте на всяка стъпка дали зрението се подобрва (с приблизително един ред на всяка стъпка) * На практика всяко намаляване на замъгляването с 0.25D трябва да добавяте 0.25 към старите стъпки, ако това подобрява зрението. Правилото: аметропия = стойност на сферата - 0.25 D / ниво на зрението (вж таблицата).

3. Започнете да намалявате замъгляването, постепенно на стъпки от 0,25 D и проверявайте на всяка стъпка дали зрението се подобрява (с приблизително един ред на всяка стъпка) * На практика всяко намаляване на замъгляването с 0.25D трябва да добавяте 0.25 към старите стъпки, ако това подобрява зрението. Правилото: аметропия = стойност на сферата - 0.25 D / ниво на зрението (вж таблицата).

4. Продължете да намалявате замъгляването, докато нивото на зрението спре да се подобрява - т.е., докато нивото на зрението достигне своебразно плато.

5. Върнете се назад към сферата преди последното намаляване на замъгляването, която не дава повече подобрение на зрението; т.е. изберете сферата с най-висок плюс (най-малък минус), която осигурява максимално зрение на този етап (с цел предотвратяване на преместване на изображението назад зад ретината, позволяйки на пациента да акомодира). Имайте също така предвид очакваната сфера в зависимост от нивото на некоригирано зрение и съобразете дали тя е в съответствие с тази констатация. (В този момент, ако стартирате с нулева (plano) леща вместо резултата от обективната рефракция, сферата се нарича НСЛ - най-добрия плюс, а зрението е най-доброто постижимо с помощта единствено на сферична корекция).

- Ако зрението не се подобрява (или се влошава), когато силата на замъгляващата леща се намалява допълнително с 0,25D, възможно е пациентът да е осъществил акомодация с 0,25D (или повече). В този случай изчакайте няколко секунди, за да дадете възможност на пациентите, да отпуснете очите си и проверете неговото зрение отново.

- Проверете дали подобряването на зрението е в съответствие с очакваното. Нивото на зрение може да се използва по всяко време, за да се оценят ефективността на аметропия при замъгляване, в съответствие с правилото на Суейн.
ИЗПОЛЗВАНЕ НА ОБЕКТИВНАТА РЕФРАКЦИЯ
ИЛИ ПРЕДИШНО ПРЕДПИСАНИЕ КАТО ОТПРАВНА ТОЧКА

1) Определяне на оста на цилиндъра:
Накарайте пациента да гледа в определена буква (с размер, отговарящ на неговото ниво на зрение), за предпочитане е това да бъде кръгла буква като О, или струпването от точки, по време на използването на кръстосания цилиндър.

a. Поставете дръжката на кръстосания цилиндър по оста на коригиращия цилиндър (в пробната рамка или фороптера). Запознайте пациента с факта, че е нормално това да доведе до влошаване на зрителната способност. Това е позиция 1 на кръстосания цилиндър.

b. Завъртете кръстосания цилиндър бързо (около оста на дръжката му), за да представите алтернативния изглед, позиция 2. Помолете пациента да посочи коя от двете позиции предоставя по-ясно зрение, (с по-контрастно, по-черно, по-кръгло изображение) с въпрос като "Кой вариант дава по-кръгли, по-ясни, по-контрастни точки?" или "Кой вариант е по-малко замъглен, 1 или 2? ... или, и двата варианта са еднакво неясни?"

Обърнете внимание на местоположението на отрицателната ос на предпочитаната позиция.
• Не забравяйте, че зрителната способност на пациента се замъглява в известна степен от кръстосания цилиндър и затова и двете позиции могат да бъдат замъгляни. Уверете пациента, че се стремите да разберете кой вариант на зрение е по-ясен, или по-точно "по-малко замъглен".
• Може да се наложи да повторите показването на позиции 1 и 2, за да избегнете погрешно определение. Затова и двете позиции могат да се различават между тях е минимална. Понякога двете изображения могат да изглеждат еднакво замъглени на пациента.

c. Променете оста на коригиращия цилиндър (минусов) с 5°, като го завъртите към страната на предпочитаната минусов кръстосан цилиндър.

d. Повторете стъпки от а. до с., докато пациентът не може да види никаква разлика или почти никаква разлика между двете позиции (изгледи). Коригиращият цилиндър сега е настроен по правилната ос на цилиндъра (т.е. оста на астигматизъм), както е и дръжката на кръстосания цилиндър.

ИЗПОЛЗВАНЕ НА ОБЕКТИВНАТА РЕФРАКЦИЯ
ИЛИ ПРЕДИШНО ПРЕДПИСАНИЕ КАТО ОТПРАВНА ТОЧКА
2) Определяне на силата на цилиндъра:

a. Поставете отрицателната ос на кръстосания цилиндър по дължината на оста на (минус) коригиращия цилиндър. Това е позиция 1.

b. Завъртете кръстосания цилиндър, за да покажете позиция 2 и помолете пациента да посочи коя позиция дава по-ясно (по-малко замъглено) зрение.

c. Ако пациентът предпочита позиция 1 (минусовата ос на кръстосания цилиндър по оста на минус коригиращия цилиндър), това показва, че той предпочита цилиндър с повече минус, така че увеличете минус коригиращия цилиндър с -0.25D. Ако избраната позиция е 2, това показва, че той предпочита по-малко минус, така че намалете с -0.25D.

d. Повторете стъпки от 1 до 3, докато пациентът няма или почти няма предпочитания или предпочитанието се обръща в обратна посока. Това е силата на пречупване на цилиндъра.

- За да запазите сферичния еквивалент, не забравяйте да регулирате силата на сферата с +0.25DS за всяко допълнително добавено увеличение от -0.50DC цилиндър и с -0.25DS за всяко допълнително намаляване с -0.50DC.

- Ако се колебаете между две стойности на цилиндъра (тоест, ако пациентът не достига до момент, в който двете възможности са напълно равни), изберете варианта да предпочитите по-ниска стойност на (минус) цилиндър.
БЕЗ ПРЕДВАРИТЕЛНИ ДАННИ ЗА РЕФРАКЦИЯТА

1) Определяне на оста на цилиндъра

Следния допълнителен метод може да бъде използван:

a) Поставете дръжката на кръстосания цилиндър по продължение на хоризонталната ос (така, че основните му меридиани да са по осите 45° и 135°). Това е позиция 1. Завъртете кръстосания цилиндър, за да покажете позиция 2 и помолете пациента да посочи коя позиция дава по-ясно (по-малко замъглено) зрение. Запишете ориентацията на отрицателната ос на кръстосания цилиндър за тази предпочитана позиция (или 45°, или 135°).

b) Сега поставете дръжката на кръстосания цилиндър по оста 45° (дръжката на 45°, меридианите на 180° и 90°). Това е позиция 1. Завъртете кръстосания цилиндър, за да покажете позиция 2 и помолете пациента да посочи коя позиция дава по-ясно (по-малко замъглено) зрение. Запишете ориентацията на отрицателната ос на кръстосания цилиндър за тази предпочитана позиция (или 180°, или 90°). Чрез комбинация с предишното измерване (результати от етапи a и b заедно), вече е известно, че оста на цилиндъра от рефракцията на пациента се намира в сектора на 45°.

c) Поставете дръжката на кръстосания цилиндър по ъглополовящата на идентифицирания сектор 45° (или чрез опитване, по-близо до оста, за която пациентът е изразил по-ясно предпочитание). Завъртете кръстосания цилиндър и помолете пациента да определи кой вариант предпочита.

d) Завъртете оста на минус коригиращия цилиндър с 5° по посока на минусовата ос от предпочитания кръстосан цилиндър (или го поставете на ъглополовящата на остатъчния ъгъл между дръжката на кръстосания цилиндър и границата на сектора 45°).

e) Повторете стъпки с и d докато пациентът няма предпочитания или почти няма предпочитания от двата представени варианта. Позицията на дръжката на кръстосания цилиндър сега показа оста на коригиращия цилиндър.

Фигура 24 a-l): Определяне на оста на цилиндъра (без предварителни сведения за рефракцията)
Алтернативна техника:

c) Поставете -0.50D коригиращ цилиндър в пробната рамка или фороптера, с ос по средата на идентифициран сектор 45°.

d) Поставете дръжката на кръстосания цилиндър по оста на този цилиндър (това е позиция 1). Завъртете кръстосания цилиндър, за да покажете позиция 2. Помолете пациента да посочи коя позиция дава по-ясно (по-малко замъглено) зрение и отбележете местоположението на отрицателната ос на кръстосания цилиндър като предпочитана от пациента позиция. Завъртете оста на коригиращия цилиндър на малки стъпки към оста на минусовия маркер на кръстосания цилиндър.

e) Повторете стъпка d, докато пациентът няма предпочитание или почти няма никакво предпочитание между позиции 1 и 2. Коригиращият цилиндър сега е настроен по оста на цилиндъра от рефракция на пациента.

e-h): определяне на оста на цилиндъра с помощта само на кръстосания цилиндър.

e) Повторете стъпка d, докато пациентът няма предпочитание или почти няма никакво предпочитание между позиции 1 и 2. Коригиращият цилиндър сега е настроен по оста на цилиндъра от рефракция на пациента.

i-l): определяне на оста на цилиндъра с помощта на пробен цилиндър и кръстосан цилиндър.
2) Определяне на стойността на цилиндъра:
Продължете както е описано по-горе, като считате началната точка като НСЛ - най-добра сфериčна леща (поставена на място) и коригиращ цилиндър -0.50D (на място), използван за прецизиране на оста на цилиндъра.

Накарайте пациента да продължи да фокусира върху групата от точки или върху кръг оптотип от таблицата за проверка на зрението на далечно разстояние. Стойността на коригиращия цилиндър ще бъде регулирана постепенно на стъпки от -0.25 D, докато показваме на пациента различните варианти, използвайки кръстосания цилиндър.

a) Поставете кръстосания цилиндър така, че неговата минусова ос да е по оста на (минус) коригиращия цилиндър.

b) Завъртете кръстосания цилиндър, за да демонстрирате двата варианта и попитайте пациента коя позиция предпочита.

c) Ако пациентът предпочита позицията с минусовата ос на кръстосания цилиндър по продължение на минусовата ос на коригиращия цилиндър, добавете още минус (-0.25) D към коригиращия цилиндър или с други думи премахнете -0.25 D. (Не забравяйте също така да поддържате сфериčния еквивалент - вижте стъпка 3 на следващата страница)

d) Повторете стъпки от a до c, докато пациентът няма предпочитания между двете позиции на кръстосания цилиндър, почти няма предпочитания или предпочитанията се обръщат в обратна посока.

e) Изберете стойността на най-слабия минусов коригиращ цилиндър, който осигурява максимално добро зрение.
СЛЕД ОПРЕДЕЛЯНЕ НА ЦИЛИНДЪР

3) Настройване на сферата:
Поддържайте сферата на най-доброто зрение чрез добавяне на +0.25DS към сферата за всеки -0.50DC добавени към коригиращ цилиндър (или -0.25DS за всеки премахнат -0.50DC).

4) Финална проверка на сферата:
След като оста и силата на коригиращ цилиндър са определени, пристъпете към монокулярна проверка на сферата с помощта на + и -0.25 D сферични лещи, за да потвърдите, че получената сфера наистина е «максимално плюсова и предлага максимална зрителна острота». По този начин:
- С +0.25 D допълнително, зрението би трябвало да бъде леко намалено. Ако не е, добавете +0.25 D и повторете проверката на сферата.
- С -0.25 D допълнително, зрението би следвало да остане същото (или да бъде леко намалено).

Фигура 26: Финална монокулярна проверка на сферата
a) с +0.25 D: зрението е влошено
b) с -0.25 D: зрението остава същото

Предписанието за астигматизъм трябва винаги да бъде определено с отрицателен цилиндър.
Астигматичната корекция може да се изрази както чрез положителен, така и чрез отрицателен цилиндър. Въпреки това, обикновено в рецепта се отбелязва отрицателен цилиндър. Методът на замъгляването, описан по-горе предполага размиване зрението на пациента чрез позициониране на двете фокусни точки (от основните меридиани на астигматизъм) пред ретината, премествайки ги след това назад чрез постепенно добавяне на отрицателни сфери, за да се постигне по-падащ фокус върху ретината и последващо сливане на двете фокусни точки в една точка, като използваме отрицателен цилиндър, за да се премести по-близкия фокус по-назад.
В зависимост от страната, все пак, практикуващите и производителите могат да изразяват предписанията в положителна или отрицателна стойност на цилиндъра. Процесът на транспозиция позволява преобразуването на плюсова стойност към минусова стойност на цилиндъра и обратно.

Транспозиция на сферо-цилиндрично предписание
За да преобразувате изписване, изразено като '+' цилиндър в '-' цилиндър (или обратно), просто сменете знака на цилиндъра, дайте на сферата в новото изписване алгебричната сума на стария цилиндър и сфера, и добавете 90° към оста от старото изписване (извадете, ако е необходимо, от 180°).
За да преобразуват рецепта от плюс до минус цилиндър и обратно:
Стъпка 1) алгебричната сума на сферата + цилиндъра дава новата сфера
Стъпка 2) сменете знака на цилиндъра => това дава новия цилиндър
Стъпка 3) променете оста на цилиндъра с 90° (чрез добавяне или изваждане на 90°, ако се изисква, така че резултатът да бъде между 0° и 180°) => Това дава новата ос на цилиндъра
Пример:
За да преобразуваме -2.00 / +3.00 х 105 до минус изписване на цилиндъра:
Стъпка 1) алгебричната сума на сферата + цилиндъра дава новата сфера
Стъпка 2) сменете знака на цилиндъра => това дава новия цилиндър
Стъпка 3) променете оста на цилиндъра с 90° (чрез добавяне или изваждане на 90°, ако се изисква, така че резултатът да бъде между 0° и 180°) => Това дава новата ос на цилиндъра

(Имаите предвид, че е установена практика, символът за градус да не се изписва в рецепта, това е с цел да се избие евентуално объркване. Например, 18° може да се обярка със 180° и обратно).
Преценка за рефрактивна грешка според нивото на некоригирано далечно зрение

Сферичният еквивалент на рефрактивна грешка при пациента може да бъде оценен от неговото ниво на некоригирано далечно зрение. В този вариант на практическия метод, сферичният еквивалент на рефрактивна грешка се оце нява според нивото на некоригирано далечно зрение. Също така, по време на рефракцията по метода на замъгляването, което включва поставянето на пациента в ефективно състояние на миопия чрез добавяне на плюсова леща, правилото може да се използва за оценка на създаденото сферично замъгляване и по този начин да се предвиди стойността на окончателна аметропия на пациента. Например, ако по време на първоначалното замъгляване зрението на пациента е 1/6 (0.16), може да се изчисли, че аметропията на пациента е равна на стойността на замъгляващата сфера - (6 х 0.25D) = +1.50 D. Ако зрението е 1/10 (0.10), аметропията на пациента е плano. Правилото позволява да бъдат наблюдавани промени в зрението по време на замъгляването и отстраняване на замъгляването. Това правило е най-ефективно за рефрактивни грешки при миопия и по-малко ефективно при хиперметропия или астigmatизъм. То не винаги е напълно точно, но може да се използва като добър помощник, позволяйки на практикуващия да оцени полното ниво на аметропия на пациента и крайния намерен резултат от рефракцията.

<table>
<thead>
<tr>
<th>Ниво на зрение (десетично)</th>
<th>Ниво на зрение (обратна скала)</th>
<th>Очаквана аметропия (еквивалент сфера)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>1/1</td>
<td>0,25 D</td>
</tr>
<tr>
<td>0,50</td>
<td>1/2</td>
<td>0,50 D</td>
</tr>
<tr>
<td>0,33</td>
<td>1/3</td>
<td>0,75 D</td>
</tr>
<tr>
<td>0,25</td>
<td>1/4</td>
<td>1,00 D</td>
</tr>
<tr>
<td>0,20</td>
<td>1/5</td>
<td>1,25 D</td>
</tr>
<tr>
<td>0,16</td>
<td>1/6</td>
<td>1,50 D</td>
</tr>
<tr>
<td>0,14</td>
<td>1/7</td>
<td>1,75 D</td>
</tr>
<tr>
<td>0,12</td>
<td>1/8</td>
<td>2,00 D</td>
</tr>
<tr>
<td>0,11</td>
<td>1/9</td>
<td>2,25 D</td>
</tr>
<tr>
<td>0,10</td>
<td>1/10</td>
<td>2,50 D</td>
</tr>
</tbody>
</table>
Дуохромен (червено-зелен) тест

Дуохромният тест може да се използва за проверка на сферичната корекция. При него се използва естествената аксиална хроматична аберация на окото, която е причина светлината с различна дължина на вълна да се пречупва по различен начин от окото. По-дългите дължини на вълните (възприемани като червени) се пречупват в по-ниска степен от късите дължини на вълните (възприемани като зелени) и по този начин червената светлина ще бъде фокусирана по-назад от зелената светлина. (Така се получава един диапазон на фокус, а не истинска фокусна точка върху ретината.) Пациентът е постигнал правилния фокус, когато централния сегмент в този малък диапазон (съответстващ на жълта светлина) е позициониран върху ретината. Тестът се използва за оценка на фокуса на окото чрез наблюдението на буквите на червен и зелен фон. Практикуващият може да попита "От коя страна буквите се виждат по-черни и по-ясни? ... или дали буквите изглеждат еднакво черни и от двете страни?" По този начин, както е показано на фигура 28:

а) ако пациентът вижда буквите по-ясно на червения фон, централната фокусна точка е разположена по-напред от ретината и следователно се изисква минусова леща, за да се коригира фокуса върху ретината (напр. недостатъчно коригирана миопия или прекалено коригирана хиперметропия);

б) ако пациентът вижда буквитете по-ясно на зелен фон, то централната фокусна точка е разположена зад ретината и следователно се изисква плоска леща (или акомодация от страна на пациента), за да се коригира фокуса върху ретината (напр. прекалено коригирана миопия или недостатъчно коригирана хиперметропия);

в) ако пациентът вижда буквите еднакво ясно върху червения и зеления фон, централната фокусна точка е разположена върху ретината и пациентът е правилно фокусиран за това тестово разстояние.

Фигура 28: Дуохромен (червено-зелен) тест

© Essilor International

Тестът Pinhole представлява много мълък отвор (обикновено с диаметър от 1 - 2 мм) в центъра на черен плътен кръг. Основната му употреба по време на субективна рефракция е, че в случай на намалена видимост той може да даде възможност за диференциране на причината измежду рефрактивни и патоложки причини. Например, той може да даде възможност да се разграничи неправилна рефракция от амблиопия (лениво око). На практика, „малката дупчица” се поставя централно пред окото на пациента, върху вече поставена корекция и се измерва зрението. Ако зрението се подобри, причината за намалено зрение е рефрактивна, например, и некоригирана или слаба коригирана рефрактивна грешка. Ако зрението не се подобри или става по-лошо, причината не е с рефрактивен произход и трябва да се подозира амблиопия или друга патология. При липса на патология или непрозрачност на рефрактивната среда на окото, нивото на зрението, получено с Pinhole теста, трябва да може да бъде получено чрез прецизна рефракция.

Фигура 29: Принцип на Pinhole тест

© Essilor International
C Binokulyarny balans

След като сме установили рефракцията на лявото и дясното око поотделно при монокулярни условия, е важно да се уверим, че тези рефракции си съответстват добре при бинокулярни условия. Това е целта на теста за бинокуляр баланс. Сферичният компонент се регулира, както е необходимо, за да се изравнят акомодационните усилия на двете очи, така че ретиналните образи на двете очи да могат да бъдат едновременно на фокус. Ако това не е изпълнено, това може да доведе до астенопия, тъй като акомодацията е дестабилизирала.

Първоначално пациентът трябва да бъде поставен в (частични) бинокулярни условия на зрение по такъв начин, че двете очи да виждат отделни изгледи от един и същи тест (единовременно монокулярно зрение). С всеки око, гледайки едно и също изображение отделно, зрението на дясното и лявото око може да бъде сравновено и най-добрият баланс на рефракция да бъде намерен.

Различни методи могат да бъдат използвани за постигане на такива едновременно монокулярни условия на зрение. Двете очи са разделени така, че или и двете очи виждат една и съща цел, но никога едновременно, или всеки око вижда различен образ на една и съща цел и двата образа се гледат едновременно. Пациентът е помолен да сравни яснотата на двете изображения. Ако едното се вижда по-ясно от другото, плюсови лещи се добавят пред това око докато двете очи виждат еднакво ясно. Ако никога не можем да достигнем до точка, при която пациентът вижда еднакво ясно с двете очи, доминиращото око трябва да бъде предпочетено и да се остави с леко по-ясно зрение.

Имайте предвид, че повечето техники за бинокуляр баланс могат да се извършват само, когато пациентът има еднаква зрелина от двете очи. Само определени техники позволяват да бъдат постигнати някой бинокуляр баланс, когато зрелната острота на двете очи е неравностойна (например двойнит дуохромен метод).

Процедура:
1. Разграничете двете очи.
2. Добавете +0.50 D, за да замъглите очите (освен ако използвате двойната таблица).
3. Помолете пациента да посочи кое око вижда по-ясно.
4. Добавяйте плюсови лещи пред това око докато двете очи виждат еднакво ясно, предпологайки доминираното око (оставете го да вижда леко по-ясно).
5. Премахнете плюсовите лещи от двете очи.

1) Разграничете двете очи като:
- редувайте окулзии: това става като закривате първо единото око, после другото и продължите бързо да редувате това закриване, така че пациентът да вижда с двете очи, но никога едновременно. По време на този тест, пациентът никога не трябва да бъде поставен в условия на бинокулярно зрение, където двете очи виждат цяла в едно и също време. Особено в началото на теста (което се случва в края на монокулярната субективна рефракция), закривайте отвореното око преди да откритете окото, което все още е затворено.
- вертикална призма: това включва поставянето на общо 6Δ BDR (или BUL - base down/up right/left = база надолу/нагоре на дясно/ляво око), за да се разграничат очите, или разпределение между очите (3Δ BDR и 3Δ BUL), така че ефектът от призматичните лещи върху качеството на зрението да е по равно за всяко око. Въвеждането на тази призма води като резултат до две изображения: по-високото изображение се вижда от дясното око, по-низкото от лявото око и този начин пациентът може да сравнява двете изображения/очи.
- поляризирани филтри/лещи: този метод постига разграничаване чрез използването на поляризиращи цели и поляризиращи лещи с взаимно перпендикулярни ориентации. Целите могат да включват бубри или поляризирани дуохромни графики.

2) Замъглете бинокулярно двете очи с +0.50 D: Зрението е леко влошено и такива размазани условия позволяват на субекта да направи сравнението по-лесно.
3) Помолете пациентите да сравняват изображенията (когато ще бъдат леко замъглени), които се виждат от лявото и дясното око и означете кое око вижда по-ясно (изображението е по-малко размазано).
4) Изравнете зрението (изравнете замъгленията) на двете очи. Направете това чрез добавяне на плоскови лещи на интервали +0.25 D, докато и двете очи виждат еднакво ясно. Ако двете очи никога не виждат еднакво ясно, дайте предимство на доминираното око (оставете го да вижда малко по-ясно), така че рефлексивната корекция да следва естествената очна доминация.
5) Премахнете плюсовите лещи +0.50 D от двете очи, поставете пациента в напълно бинокулярни условия на зрение (отворени и двете очи, гладко в една и съща цел) и проверете нивото на зрението бинокулярно.

Имайте предвид, че бинокулярният баланс може да се извърши както на отделено разстояние, така и на близо (вж фиг.30).
Фигура 30: Бинокулен баланс

a) Замъгляване с +0.50D

b) Баланс при замъгляване

c) Бинокулярно отстраняване на замъгляването
Финална проверка на бинокулярната сфера, субективното възприятие и комфорт (включително скрининг на бинокулярно зрение)

Накрая, след като сме установили рефракцията на всяко око поотделно и балансирали между двете очи, сферата трябва да бъде потвърдена бинокулярно. След това може да бъде измерена бинокулярната зрелната острота на пациента, а също така и неговото субективно възприятие на крайното предписание.

За предпочитане тази последна бинокулярна проверка на сферата трябва да се извърши с помощта на пробна рамка, за да можем да постигнем по-естествени зрелни и пространствени условия от тези, които имаме, когато пациентът е прегледян с фороптер.

Накарайте пациента да гледа на отделено разстояние в някакъв малък детайл. Добавете бинокулярно ±0.50D и ±0.25D върху съществуващата корекция и помолете пациента да избере кои лещи дават по-добро зрение. Запишете този резултат за бинокулярната зрелна острота.

Не забравяйте също при окончателното предписание да вземете предвид факта, че субективната рефракция е извършена в условия на крайно разстояние, а не на оптична безкрайност. Поради тази причина, когато преценяваме окончателната бинокулярна сфера и комфорта на предпишането, за предпочитане е пациентът да гледа навън, към хоризонта. Всъщност, стандартираното тестово разстояние не съответства на оптичната безкрайност. Субективната рефракция, извършена с помощта на таблица на разстояние от 6 метра поражда грешка от 1/6 м = 0.16D; на 5 м води до грешка от 1/5 м = 0.20D. Въпреки, че тези грешки са по-малки от предписвано нарастване от 0.25D, те все пак са потенциално значителни и може да се наложи регулиране на окончателното предписание с -0.25D бинокулярно.

Фигура 31: Бинокулярна проверка на сферата, субективното възприятие и комфорт
a) с +0.25D – зрението е замъглено
b) с -0.25D – зрението не се променя

СУБЕКТИВНА
РЕФРАКЦИЯ
ПРАКТИЧЕСКА РЕФРАКЦИЯ

В обобщение, търсеният резултат по време на бинокулярната проверка на корекцията на сферата е намаление на яснотата и комфорта с допълнителни +0.25D и липсата на реална промяна, наблюдавана при допълнителни -0.25D. Стойността на сферата в рефракцията на пациента следва да се регулира бинокулярно, за да се получи този резултат.

Също така при окончателното предписание да влезем предвид факта, че субективната рефракция е извършена в условия на крайно разстояние, а не на оптична безкрайност. Поради тази причина, когато преценяваме окончателната бинокулярна сфера и комфорта на предпишането, за предпочитане е пациентът да гледа навън, към хоризонта. Всъщност, стандартираното тестово разстояние не съответства на оптичната безкрайност. Субективната рефракция, извършена с помощта на таблица на разстояние от 6 метра поражда грешка от 1/6 м = 0.16D; на 5 м води до грешка от 1/5 м = 0.20D. Въпреки, че тези грешки са по-малки от предписвано нарастване от 0.25D, те все пак са потенциално значителни и може да се наложи регулиране на окончателното предписание с -0.25D бинокулярно.

Бинокулярната сфера може да се провери по следните начини:

1) Поставете стойностите от субективната рефракция в пробната рамка и накарайте пациента да се фокусира на възможно най-отдалечено разстояние (например, върху хоризонта), гледайки с двете очи едновременно.
2) Поставете допълнително +0.25 D пред всяко око (използвайки бинокулярен държач за лещи) и попитайте пациента дали това „подобрява, влошава зрението или не предизвиква промяна“. a) Ако зрението се влошава, резултатът от рефракцията, поставен в пробната рамка, е венер или завишен към плюс. Не добавяйте допълнителните +0.25D към резултата от рефракцията. Преминете към стъпка 3). b) Ако няма промяна, резултатът от рефракцията, поставен в пробната рамка, е завишен към минус или занижен към плюс. Добавете допълнителните +0.25 D бинокулярно към резултата от рефракцията и повторете стъпка 2). c) Ако зрението се подобрява, резултатът от рефракцията, поставен в пробната рамка, е (още повече) завишен към минус или занижен към плюс. Добавете +0.25 D и повторете стъпка 2). Ако е нужно да добавите >+0.50, повторете отново процеса на рефракцията.
3) Сега по същия начин поставете -0.25 D пред всяко око.
 a) Ако зрението се влошава, резултатът от рефракцията, поставен в пробната рамка, е верен. Това е финалната рефракция.
 b) Ако няма промяна, резултатът от рефракцията, поставен в пробната рамка, е верен или леко завишен към минус. Преценете дали да добавите или не допълнителните -0.25D.
 c) Ако зрението се подобрява, рефракцията е завишена към плюс или занижена към минус. Добавете -0.25 D и повторете стъпка 3). Ако е нужно да добавите >-0.50, повторете отново процеса на рефракцията.

Записайте този резултат за бинокулярната зрелна острота.

Copyright © ESSILOR ACADEMY EUROPE, 13 rue Moreau, 75012 Paris, France - All rights reserved- Do not copy or distribute
Бинокулярен преглед на зрението

На този етап от прегледа е важно да се провери бинокулярното зрение на пациента. По-точно, важно е да се потвърди, че пациентът има добро едновременно зрение и че изображенията, възприемани от двете очи, се сливат без затруднение. За да оценим това, бинокулярното зрение на пациента трябва да бъде разграничен, за да проверим дали:

1) не е наличе пълно или частично потискане на зрението на едното око, като гарантираме постоянното присъствие на две изображения

2) не е наличие потенциално отклонение или значителна аморфия, като проверим центровката на двете изображения.

Имайте предвид, че едновремения визия вече може да е била наблюдавана по време на теста за бинокулярен баланс. В зависимост от това дали бинокулярното зрение е ограничено с помощта на призми, червено-зелени филтри или поляризращи филтри, например, един от следните тестове може да бъде извършен:

Дисоциация чрез призми (метод на Фон Грефе)

Принципът е да се разграничи бинокулярното зрение с помощта на вертикална призма. Пациентът гледа поредица от букви, първо вертикално, след това хоризонтално. Продължете, както следва:

a) Поставете 6 Δ призма с база надолу пред дясното око (или 3 Δ BDR и 3 Δ BUL).
b) Уверете се, че пациентът вижда две изображения едновременно, едно високо (в дясно), другото ниско (вляво) (изображението се измества към върха на призмата).

c) Накарайте пациента да определи положението на кръстът спрямо кръговете:
 a. Ако кръстът се вижда в центъра на кръговете, имаме ортофория.
 b. Ако кръстът е изместен от центъра, имаме хетерофория.

d) Сега проведете теста чрез разграничаването на очите с помощта на вертикална призма с основа 10-15 Δ в повече за едното око и накарайте пациента да гледа в хоризонтална поредица от букви. Двете изображения трябва да се разглеждат поотделно хоризонтално. Всяка вертикална хетерофория може да бъде демонстрирана и измерена.

Фигура 32: Разграничиване чрез призми
Запомните, че за всички тестове чрез разграничаване:
- Ако изображението, което се вижда от дясното око, е надясно и изображението, което се вижда от лявото око, е наляво, има езофория.
- Обратно, ако изображението, което се вижда от дясното око е наляво и изображението, което се вижда от лявото око е надясно, има екзофория.
- Повечето хора имат някаква степен на хетерофория. Това създава проблем само, ако например нейната компенсация се окаже трудна.

Разграничиване чрез цветни филтри (тест на Шобер):
Този тест се състои от червен кръст и 2 зелени кръга, наблюдани през червени и зелени филтри, съответно от лявото и дясното око. Окото, пред което е поставен червен филтър, вижда червения кръст. Окото, пред което е поставен зеления филтър, вижда зелените кръгове. Продължете, както следва:

a) Поставете червен филтър пред едното око и зелен филтър пред другото.
b) Попитайте пациента какво вижда:
 a. Ако пациентът вижда и кръста и кръговете, имаме едновременно зрение
 b. Ако пациентът вижда само кръста или само кръговете, имаме подтискане на едното око.
c) Помолете пациента да определи положението на кръста спрямо кръговете:
 a. Ако кръстът се вижда в центъра на кръговете, имаме ортофория.
 b. Ако кръстът е изместен от центъра, имаме хетерофория.

Нормално пациентът трябва да вижда както червения кръст, така и зелените кръгове. Кръстът трябва да бъде в границите на зелените кръгове.

Фигура 33: Тест на Шобер
Разграничаване чрез поляризиращи тестове (Polarized Cross Test):
Поляризиращият кръст е наличен в повечето прожекционни таблици. Продължете, както следва:

а) Поставете поляризиращите филтри пред двете очи.
b) Политайте пациента да даде и двете линии на кръста се вижда ясно:
 а. Ако целият кръст се вижда ясно, имаме едновременно зрение.
 б. Ако само едната линия на кръста се вижда (или има тенденция да се скрива и показва), имаме (пълно или частично) потискане на едното око.
 с) Политайте пациента да даде и двете линии на кръста са идеално центрирани, или някоя от тях изглежда изкривена спрямо другата:
 а. Ако двете линии на кръста са центрирани, имаме ортофория.
 б. Ако двете линии на кръста са изкривени хоризонтално и/или вертикално, имаме хетерофория.

Стереопсис
За да оцените стереоскопичното зрение на пациента, използвайте тест, който дава възможност за две отделни изображения, които да бъдат представени на пациента. Тези изображения са почти идентични, но леко изместени едно спрямо друго, така че те създават усещане за релеф (т.е. тривизмерно виждане), когато се сливат. Тези тестове постигат разграничаване на зрението с помощта на червен и зелен филтър (техника на Брок) или поляризации филтри (например тест на поляризационната решетка). Те включват проверки дали част от изображението се възприема от пациента сякаш е по-близо или по-далеч от останалата част от изображението. Принципът е, че когато двете очи се сливат, ако изображението, което се вижда от дясното око, е леко отместено надясно и изображението, което се вижда от лявото око, е леко отместено на ляво, пациентът остава с впечатлението, че равнината на теста се отделя. Обратно, ако изображението, което се вижда от дясното око е леко отместено на ляво и това, което се вижда от лявото око, е леко отместено надясно, пациентът остава с впечатлението, че равнината на теста се доближава. Наличие на дори лека степен на стереоскопия предполага много добро ниво на бинокулярно зрение.
Определение на добавката за близко зреение (Пресбиопия)

Прецененото определяне на подходящата добавка за близо е от жизненоважно значение за комфорта на пациента с пресбиопия. Както и при аметропия на далечно зреение, пресбиопията на пациента трябва да бъде измерена и добавката за близо да бъде определина от измерването на максималната остатъчна амплитуда на акомодация. Това е така, защото във всяка определена възраст остатъчната амплитуда на акомодация се различава при отделните пациенти.

1) МЕТОД НА АКОМОДАЦИОННИЯ РЕЗЕРВ

Методът включва определянето на максималната остатъчна амплитуда на акомодация на пациента и впоследствие изчисляване на стойността на добавката, която трябва да бъде предписана. Процедурата се извършва в условия на бинокулярно зреение, при дошърно зрение, като се използва тест за четене, който може да бъде поставен на фиксиран или променлив предмет.

a) Измерете остатъчната амплитуда на акомодация: Използвайки тест за четене, който може да бъде поставен на различни разстояния, намерете позицията на близката точка на акомодация, чрез приближаване на текста към пациента, докато той (едва) започне да става размазан (т.е. намерете най-близката точка, на която пациентът може да фокусира на близко разстояние). Амплитудата на акомодация е обратнопропорционална на това разстояние: например, ако разстоянието е 0,50 м, амплитудата на акомодация е 1/0,50 м = 2,00 D.

С помощта на тест за четене във фиксирана позиция:
- Поставете теста на 40 см (1/0,40 м = 2,50D) и помолете пациента да се фокусира върху възможно най-малките букви.
- Ако най-дребният текст е ясен, сложете лещи от -0,25 D, -0,50 D, и т.н., докато пациентът вече не е в състояние да вижда ясно текста.
- Ако най-дребният текст е замъглен, сложете лещи от +0,25 D, +0,50 D, и т.н., докато пациентът (едва) започне да вижда ясно в текста.

Амплитудата на акомодация = 2,50 D – добавената стойност.

b) Определете добавката:
Един пациент може комфортно да използва за продължителен период от време само 2/3 от своята амплитуда на акомодация (като по този начин запазва акомодационния резерв от най-малко 1/3 от амплитудата на акомодация).
2) МЕТОД НА МИНИМАЛНАТА ДОБАВКА

Този метод се състои в това да възстановим зрението на пациента пресбиоп до привидна „акомодация“ от 3,50 D (което представлява силата, необходима за обичайните ежедневни дейности на близо), чрез преместване на неговата коригирана близка точка на разстояние от 28 см (= 1 / 3.50 D). За тази цел, определете минималната добавка, необходима на пациента, за да чете на 40 см (близост 2.50 D) и след това добавете +0.75 D до +1.00 D, за да постигнете 28 см (близост 3.50 D).

a) Коригирайте прецизно далечното зрение

Не забравяйте да коригирате аметропията до нивото на максимум плюс за максимална зрительна острота. Това е важно защото, всяка недостатъчна корекция на хиперметропия или завишена корекция на миопия може да доведе до прекомерна добавка за близко зрение, а това е най-добре да се избяга.

b) Определете минималната добавка за 40 см

Поставете тест за четене на 40 см и помолете пациента да се фокусира върху най-малките букви. Ако пациентът е пресбиоп, най-малките букви ще бъдат размазани. Прибавете +0.25 D, +0.50 D, и т.н. бинокулярно към корекцията за далечно зрение, докато пациентът започне да различава най-малките букви от теста. Стойността на добавените лещи е минималната добавка.

c) Добавете +0.75 D или +1.00 D

към минималната добавка, за да намерите комфортната добавка.

d) Проверете зрительния комфорт на пациента

С помощта на пробна рамка и тест за четене:
- Помолете пациента да оцени зрительния си комфорт при поставена добавка
- Приближете теста по-близо до пациента, докато най-малките символи не могат вече да се виждат ясно. Това трябва да се случи на приблизително 25 см от очите (ако <20 cm, добавката е твърде слаба, ако >30 cm добавката е твърде сила).
- Коригирайте стойността на добавката (от 0.25 до 0.50 D) в съответствие с необходимото разстояние за четене или работа, ако то е различно от 40 см, при което се провежда теста. Намалете стойността на добавката за по-голямо работно разстояние или я увеличете за по-малко работно разстояние.

Фигура 38: Принцип на метода на минималната добавка
3) МЕТОД НА БИНОКУЛЯРЕН ФИКСИРАН КРЪСТОСАН ЦИЛИНДЪР

Този метод включва определяне на добавката за близо при пресбиопия като прибавям ±0.50 кръстосан цилиндър (предписание +0.50/-1.00x90) пред двете очи на пациента и го накараме да гледа в кръст, съставен от хоризонтални и вертикални линии, на разстояние от 40 см. Тъй като пациентът пресбиоп, той има недостатъчна акомодация и предвид ориентацията на кръстосаните цилиндри, първоначално хоризонталните линии на кръста се виждат по-ясно, отколкото вертикалните линии. След това поставяме бинокулярно плюсови лещи, постепенно в интервали от 0.25D, докато хоризонталните и вертикалните линии на кръста се виждат еднакво ясно. Плюсовата стойност, поставена на този етап, е добавката за близо за 40 см. На практика, изпълнете следните стъпки (най-просто като използвате фороптер, тъй като в него са интегрирани бинокулярни фиксиран цилиндър):

а) Коригирайте прещърчено далечно зрение

Не забравяйте да предпишете максимум плюс за максимална зрителна острота.

б) Определете добавката:

- Накарайте пациента да се фокусира върху кръст, съставен от хоризонтални и вертикални линии, поставен на 40 см разстояние.
- Поставете ±0.50 кръстосан цилиндър (минусова ос на 90°) пред двете очи. Сега пациентът вижда хоризонталните линии на кръста по-ясно.
- Поставяйте бинокулярно лещи от +0.25, +0.50, +0.75 D, и т.н. постепенно, докато пациентът започне да вижда хоризонталната и вертикалната линии еднакво черни и фокусирани.
- Продължете, докато пациентът вижда вертикалните линии по-ясно.
- Изберете като добавка стойността, която дава най-добърата комбинация между хоризонтални и вертикални линии.

c) Проверете зрителния комфорт на пациента при четене:

- Поставете в пробната рамка корекцията за далечно зрение и получената добавка.
- Помолете пациента да оцени зрителния си комфорт с помощта на тест за четене.
- Регулирайте стойността на добавката в съответствие с необходимото разстояние за четене или работа на пациента.
Допълнение:

Последици от предписването на завишен добавка за близо

Размерът на предписаната добавка влияе пряко върху обхвата на зрительното поле на пациента пресбиоп. Всъщност, границите на обхвата на близко зрение се определят от силата на добавката и от остатъчната амплитуда на акомодация. Обхвътът на акомодацията при близко зрение става по-тесен и по-ограничен когато добавката става по-сила и също така става по-ограничен, когато остатъчната амплитуда на акомодация намалява. Следователно:

- По-силната добавка намалява видимата дълбочина на използваната диапазон на акомодация.
- С прогресиране на пресбиопията увеличението в добавката и намаляването на остатъчната амплитуда на акомодацията се комбинират и водят до намаляване на обхвата на близко зрение.

Като пример, помислете за един млад пациент пресбиоп, чието зрение е коригирано с еднофокусна леща със сила +1,50 D (фигура 42а) или прогресивна леща с добавка +1,50 D (Фигура 42б). В съответствие с метода на минималната добавка описан подробно по-нагоре, остатъчната (максимална) амплитуда на акомодация на пациента е 2,00 D. Едно много опростено теоретично изчисление показва, че тази амплитуда на акомодация се простират при далечно зрение от безкрайността до 50 см и при близко зрение от 67 см до 28 см. Ако предписаната добавка е +2,00 D вместо +1,50 D, обхвата на близко зрение се променя и вече се простират между 50 см и 25 см. Следователно, завишеното коригиране на добавката с +0,50 D има за последица намаляване на обхвата на ясно зрение със 17 см в отдалечената зона (от 67 см до 50 см) и води до подобрение от едва 3 см в близост (от 28 до 25 санитметра). Последицата е, че пациентът има по-ограничен обхват на ясно зрение.
Няколко години по-късно този пациент ще има остатъчна амплитуда на акомодация от само 1,00 D и по този начин ще има нужда, пак в съответствие с метода на минималната добавка, от добавка от +2,50 D (фигура 43). Неговата амплитуда на акомодация на близко зрение естествено намалява и сега се простират от 40 cm до 28 cm. Ако корекцията на добавката е завишена с +0,50 D (чрез предписване на добавка от +3,00 D вместо +2,50 D), обхвата на ясно зрение се простират от 33 cm до 25 cm, така че има загуба и ограничаване със 7 cm в дълбочината на полето на междинното зрение срещу едва 3 cm подобрение в най-близкото зрение.

При прогресивните лещи, увеличаването на добавката намалява зрителното поле не само в дълбочина, но също и в ширина. Предписването на прекомерна добавка за близо увеличава страничните аберации на лещата, което намалява използваемата ширина на централната зона и увеличава ефекта на периферните деформации. Прекомерната добавка за близо е основна причина за затруднения при адаптирането към прогресивни лещи.

При определяне на добавката повечето пациенти пресбиопи естествено изискват по-висока плюсова стойност поради съвършения с нея увеличителен ефект. Въпреки това, увеличение от +0,50 D в предписанието за близо, изглежда удобно и сигурно по време на рефракцията, може да се окаже некомфортно на ежедневна база. Това е причината, поради която всяко предписание за близо следва да бъде изпробвано от пациента в естествени условия, както и обхвата на ясно зрение да бъде проверен, преди да се оформи рецептата. Извършвайки това, предписание за близо се крие в умението да се използва добавката умерено и да се прецени точно корекцията за пресбиопия.

Фигура 41: Дълбочина на зрительното поле при пресбиоп в късен стадий

a) Еднофокусна леща с сила +2.50 D

b) Прогресивна леща с добавка +2.50 D
След като рефракцията за далеч и добавката за близо са вече определени, трябва да бъде проверен също така бинокулярният баланс на пациента за близо. Всъщност, бинокулярният баланс е бил определен за далечно зрение в ситуация, която рядко се среща: гледайки в далечината при пръв поглед (право напред, на нивото на очите). При близко зрение, по-ниската линия на погледа и стимулирането на акомодацията и конвергенцията може да промени този баланс. Това трябва да се провери чрез разграничаването на бинокулярно зрение за близо с наведени очи. Това може да се извърши с инструменти като Optoprox® или Proximeter®. Принципът е, както следва:

1) Разграничите бинокулярното зрение на пациента за близо:
Поставете корекцията за близо на пациента в пробната рамка. Поставете теста на определено разстояние (например 40 см) и проверете дали пациентът гледа с наведени очи. Разграничите бинокулярното му зрение:
 a) с помощта на поляризационни или червено-зелено филтри (Optoprox®)
 b) с помощта на преградата (Proximeter®)
Пациентът в момента е в ситуация на непълно бинокулярно зрение, което дава възможност зрението на двете очи да бъде сравнено.

2) Накарайте пациента да сравни зрението на дясното и на лявото око и определете баланса:
 a) Ако има равновесие на зрението между дясното и лявото око, балансът е постигнат.
 b) Ако има разлика в зрението между двете очи:
 i. Замъглете по-доброто око докато и двете очи са еднакво замъглени (чрез поставяне на +0.25 D на по-доброто око) и по този начин оптимизирайте едновременното възприятие на двете очи.
 ii. Премахвайте замъгляването бинокулярно докато получите най-доброто и еднакво за двете очи ясно зрение.
Не забравяйте, че този баланс предполага зрителна остро̀та, която е по същество еднаква и за двете очи. Имайте предвид също, че е необходимо да се знае кое е доминиращото око на пациента, и че пек дисбаланс в полза на това око може да бъде запазен. По-точно, внимавайте да не размените естествената доминация на едното око по отношение на другото.

3) Оценете приемането на баланса на близко зрение на отдалечно разстояние:
Ако балансът на близко зрение се различава от баланса на далечно зрение, като цяло, за предпочитане е да се благоприятства баланс за близо и да се провери дали това е приемливо за отдалечно разстояние. За да направите това, поставете балансираща леща (обикновено +0.25 до +0.50 D) пред едно от очните на пациента, пред корекцията за далеч. Ако пациентът не показва някакъв дискомфорт, запазете този баланс. В противен случай може да се наложи да бъдат предписанi два комплекта лещи: един за далечно зрение и друг за близко зрение.

Проверка на бинокулярния баланс при близко зрение

Figura 42: Optoprox®

Figura 43: Проверка на бинокулярен баланс за близо с Proximeter®

Проверката на бинокулярния баланс за близо е особено важна при пациенти пресбиопи, които поради загуба на акомодация са много чувствителни към едновременното действие на двете очи при близко гледане.
В случай на пациент, който няма пресбиопия

За пациенти, които няма пресбиопия, пределът на близкото зрение често се извършва само ако пациентът има симптоми или изрази зрително оплакване, или ако някаква аномалия е била открита по време на предварителните измервания. Въпреки това, такъв преглед трябва да се извърши във всички случаи, тъй като много аномалии могат да няма значителни симптоми. Обикновено симптомите включват зрителна умора (астенопия) след периода на работа на близко разстояние. Тази умора може да има различен произход, тя може да бъде нормална (защото известна умора се очаква дори когато очите и зрителната система са напълно нормални) или необичайна и по-специално може да бъде причинена от некоригирана аметропия, разстройство на бинокулярното зрение или акомодационна умора.

1) Некоригирана аметропия

Обикновено пациентите ще изпитват симптоми на зрителна умора на близко разстояние в случай на некоригирана хиперметропия, или на далечно разстояние в случай на некоригиран астигматизъм. Некоригираната хиперметропия изисква постоянно усилие за акомодация, което е уморително в дългосрочен план. Некоригираният астигматизъм дестабилизира акомодацията и изисква компенсиращо усилие, което може да бъде източник на зрителна умора. Решението се състои основно в осигуряването на ефективно кориране на далечно зрение и проверка, че това осигурява също така облекчение за пациента при близко зрение.

Частен случай е този на пациент пред-пресбиоп, който на този етап често е бил в състояние да започне да бъде неспособен да компенсира латентна хиперметропия от известно време. Латентната хиперметропия може да се развие по-бързо отколкото ранната пресбиопия. Уверете се, че няма да обхвътите хиперметропия и пресбиопия, и че ще коригирате напълно далечното зрение. Често пациентът носи тази корекция само за близо в началото, а след това постепенно започва да я използва за далечно зрение.

2) Нарушения на бинокулярното зрение

Две от най-честите нарушения, които могат да бъдат срещани с аметропия, са конвергентна недостатъчност и затруднения при компенсация на тежка хетерофокусия.

- Конвергентната недостатъчност: това е нарушение на близкото зрение при поставена корекция за далечно зрение и нежелание за компенсация. Ако пациентът се стреми да погледне далеч, ако той не може вече да вижда малките букви ясно, това може да има намалена акомодационна амплитуда и способност. Често пациентът носи тази корекция само за близо в началото, а след това постепенно започва да я използва за далечно зрение. Частен случай е този на пациент пред-пресбиоп, който на този етап често е бил в състояние да започне да бъде неспособен да компенсира латентна хиперметропия от известно време. Латентната хиперметропия може да се развива по-бързо отколкото ранната пресбиопия. Уверете се, че няма да обхвътите хиперметропия и пресбиопия, и че ще коригирате напълно далечното зрение. Често пациентът носи тази корекция само за близо в началото, а след това постепенно започва да я използва за далечно зрение.

3) Акомодативна умора

Тя се проявява като затруднение при поддържането на фокус по време на близко зрение. Пациентът може да изпитва умора и замъгляло зрение след периода на близка работа. Например, това състояние е често срещано при студенти, които имат голямо изискване за близка работа и по тази причина акомодират усилено през продължителни периоди от време. За да спомогнат за идентифициране на точното естество на проблема, следните две измервания могат да бъдат направени:

- Амплитуда на акомодация: с метода на фиксирания тест, описан по-горе за пресбиопия: този тест за четене е позициониран в близост, в естествената позиция на погледа надолу, например на 40 см. Минусови лещи се въвеждат на място (за стъпки от -0.25 до -0.50 D), докато пациентът не може повече да вижда малките букви ясно. Стойността, при която буквите са все още в състояние да бъдат прозрени от пациента, се използва за изчисляване на амплитудата на акомодация: амплитудата на акомодация = 1/0.40 m - добавената стойност. Това измерване след това се сравнява със статистическите норми. Амплитудата на акомодация често се оказва по-ниска от средната в такива случаи.

- Акомодативна способност: (с т.нар. метод accommodate rock): при поставена корекция за далеч, накарайте пациента да се фокусира върху малка дума, поставена на 40 см. С помощта на флипер (бинокулярен държач за лещи), зареден с лещи с +2.00 D и -2.00 D оцените броя на циклите на акомодациите/деакомодациите, които пациентът може да изпълни за една минута. За да направите това, първо поставете лещи с +2.00 D (за да се освободи акомодацията) и помолете пациента да посочи, веднага след като думата се вижда ясно. В този момент веднага разместете лещите, така че сега лещите с -2.00 D да са на място (за да се стимулира акомодацията) и помолете пациента да посочи кога думата е отново ясна. Повторете този цикъл в продължение на 1 минута и избъртите броя на изпълнените цикли: по принцип се счита, че ~13 или повече цикли е нормален резултат, ~8 или по-малко цикли е анормален. Ако пациентът не е в състояние да получи ясна визия с ± 2.00D, може да се използва флипер с ± 1.00D, въпреки че това вече дава индикация за намалена акомодационна амплитуда и способност. (Акомодационната способност често може да бъде съпроводена с акомодативна недостатъчност и конвергентен излишък и затова не трябва да се измерва изолирано).

Ако се наблюдава акомодативна недостатъчност и/или намалена акомодативна способност, това понякога може да се лекува чрез зрителна терапия и очни упражнения или чрез предписването на слаба плюсова корекция в близкото зрение, при условие, че не са налице бинокулярни противопоказания. Поради тази причина тези резултати не трябва да се вземат изолирано и пълен бинокулярен преглед на зрението следва да се извърши от подходящ квалифициран специалист.

Съображение: Ако има зрителна умора и възможността за акомодация, практикуваната акомодация се сравнява със статистическите норми. Амплитудата на акомодация: амплитудата на акомодация = 1/0.40 m - добавената стойност. Това измерване след това се сравнява със статистическите норми. Амплитудата на акомодация често се оказва по-ниска от средната в такива случаи.
VI Оценка на бинокулярното зрение

Ако при прегледа се открие някаква аномалия на бинокулярното зрение, е необходимо да пристъпите към по-задълбочено проучване, за да идентифицирате и лекувате проблема. Това трябва да се извършва само от очен професионалист с подходяща квалификация, с пренасочване, ако е необходимо.

Целта на тази глава не е да осигури пълен с прегледа на изследването и лечението на бинокулярни зрителни смущения. Това е една обшира тема, която е извън обхвата на този документ. Това е по-скоро начин да припомнете няколко основни принципи, да описате как се идентифицират някои бинокулярни нарушения на зрението и да предложите някои полезни съвети за предпоставянето на призматична корекция.

А Фория, фузионни резерви и тропия

1) Фория:

Хетерофорията, често наричана просто фория, може да бъде определена като «латентно отклонение на зрителните оси, компенсирани от стимула за поддържане на фузията и за избягване на диплопия», или казано по друг начин, «тенденцията двете зрителни оси на очите да не бъдат насочени към фиксационната точка при отсъствието на подходящ стимул за фузия». Очите извършват постоянно усилие за компенсиране на всяка фория, така че да поддържат зрителните оси на двете очи във фокусната точка.

Форията може да се докаже чрез разграничаването на бинокулярното зрение с цел да се поддържа фузията. Това разграничаване може да бъде или сетивно - чрез нарушаване еднаквостта на изображенията (дисоциация чрез филтри, например), или моторно - чрез нарушаване на тяхното наслагване (дисоциация чрез призми, например). В зависимост от избраната форма, разграничаването може да бъде повърхностно или дълбоко, централно и/или периферно, частично или цялостно.

В зависимост от условията на измерване, т.е. в зависимост от вида на избраното разграничение, форията ще се нарече «асоциирана» или «дисоциирана». Когато използването на тест включва елемент на фузия, възприемана обикновено от двете очи, за форията се казва, че е «дисоциирана» (тест с червен филтър, тест на Малет, и т.н.). Когато наличие няма елемент на фузия, форията се нарече «дисоциирана» (дисоциация чрез филтри, тестове на Мадокс и т.н.).

За типични стойности на дисоцирана хоризонтална фория обикновено се считат ~0.5 Δ екзофория за далеч и 4 - 6 Δ екзофория за близо; за дисоцирана вертикална фория, ~ ортофория (0 Δ) както за далеч, така и за близо.

Фигура 45: Типични стойности на фория и фузионен резерв

a) на далечно разстояние
b) на близо

2) Фузионни (конвергентни) резерви:

Очите естествено притежават конвергентни резерви или фузионна свобода, показателни за способността на зрителната система да поддържа фузията и да компенсират в случай на всякаква хетерофория. Фузионните резерви представляват допустимостта на очите да се събират или раздалечават спрямо фиксационната точка или всъщност способността им да се противопоставят на всякакво нарушаване на тяхното сливацне. При оценката на фузионните резерви следва да се отбележат три специфични момента или етапа:

- Точката, в която допълнителната свързана конвергенция предизвиква акомодация. Тази точка се характеризира с първото замъгляване на фокусната цел (точка на замъгляване).
- Точката, в която фузията се разрушава и където образите на двете очи се отделят. Това обикновено се характеризира с раздвояване на изображението, или диплопия (точка на разделяне).
- Точката, в която фузията на двете очи се възстановява. Това обикновено се характеризира с връщане към единно изображение (точка на възстановяване).

Типични стойности на фузионните резерви (точките на замъгляване/разделяне/възстановяване) са показани на фигура 45. При далечно зрение те са приблизително два пъти по-големи при конвергенцията, отколкото при дивергенцията. При близко зрение те са значително по-близо разположени сред конвергенция и дивергенция. Близо вертикална равнина фузионните резерви са ниски.
За да оцените фузионните резерви на пациента, лекарят може или да направи скрининг за фузионните способности, или да измери конвергентните резерви (наричани още позитивна относителна конвергенция) и дивергентната (отрицателна относителна конвергенция). Принципът е да се поставят призми с различни стойности и да се провери за всеки етап дали пациентът може да компенсира техния ефект в дадена фокусна и акомодационна точка. За да предизвикат конвергенция, използвайте призма с база навън. За да предизвикат дивергенция, използвайте призма с база навътре. Винаги предизвиквайте и измервайте способността за дивергенция преди да тествате конвергенцията.

а) Скрининг на фузионните резерви: включва проверка на способността на очите да компенсират поставянето на призми с известни стойности. При далечно зрение: 5 Δ с база навътре и 10 Δ с база навън. При близко зрение: 10 Δ с база навътре и 10 Δ с база навън. На практика, помолете пациента да гледа например вертикалния ред от букви и поставете призмата пред едно от очите на пациента. Първоначално изображението трябва да се вижда двойно, а след това единично при фузия от страната на пациента. Ако това не е така и пациентът все още продължава да възприема два изображения дори и след няколко секунди, това означава че фузионните резерви са ниски.

б) Измерване на фузионните резерви: това включва използването на призма, която поставя постепенно с нарастващо сила в същия посоката с цел да се открият точката на замъгляване, точката на разделяне и точката на възстановяване. За измерване на хоризонталните резерви (първо дивергенция, а след това конвергенция), накарайте пациента да гледа във вертикална линия от малки букви, съответстваща на неговото ниво на зрение. Поставете призмата, увеличавайки постепенно силата ѝ до момента, в който пациентът започва да възприема двойно изображение. Този етап е хипертропия, ако се вижда навътре, след това вижда навън. Това означава че пациента стартира дивергенция, ако се вижда навън, след това вижда навътре. Това означава, че пациентът започва да вижда двойно изображение при този етап. За измерване на хоризонталните резерви (първо конвергенция, а след това дивергенция), не е нужно да се налагат призми, а може да се вижда двойно изображение дори и след няколко секунди, ако пациентът започва да възприема двойно изображение.

Една от причините може да е на декомпенсация на фория. Когато очите вече не могат да компенсират форията, това може да се наблюдава през време на близко зрение. В този момент пациентът може да започне да вижда двойно изображение. Една от причините може да е на декомпенсация на форията. Когато очите вече не могат да компенсират форията, това може да се наблюдава през време на близко зрение. В този момент пациентът може да започне да вижда двойно изображение.

Фигура 46: Скрининг на фузионните резерви

а) конвергенция

б) дивергенция

3) Тропия (спрабизъм):

Основната разлика между (хетеро)фория и (хетеро)тропия е, че бинокулярната фиксация се поддържа при фория, но не и при тропия. При тропия едното око е обърнато така, че неговата зрителна ос не съвпада с фиксираната цел или предмет наблюдаван от пациента, и по този начин нейното изображение не попада върху фовеята на окото с тропия. Тропията може да има много причини (рефрактивни, анатомични, неврологични или патологични) и може да бъде, например, постоянна или периодична, едновременна или непрекъснато, едностранна или редуваша се, акомодативна или не-акомодативна.

Една от причините може да е на декомпенсация на фория. Когато очите вече не могат да компенсират форията, това може да се наблюдава през време на близко зрение. В този момент пациентът може да започне да вижда двойно изображение. Една от причините може да е на декомпенсация на форията. Когато очите вече не могат да компенсират форията, това може да се наблюдава през време на близко зрение. В този момент пациентът може да започне да вижда двойно изображение.
В случай, че бинокулярна зрительна аномалия бъде разпозната по време на първоначалния преглед или по време на бинокулярната проверка на рефракцията, естеството на проблема трябва да бъде идентифицирано. По-точно, жизнено важно е да се установи дали аномалията е свързана с лошо компенсирала фория или тропия. И ако това е така, състоянието трябва да се измери и анализира.

1) Разграничаване на фория от тропия:

Фория и тропия могат да бъдат диференцирани чрез едностранен и редуват се Cover test. Както бе споменато при предварителните тестове, това включва наблюдаване на движението на очите по време на закриването и разкриването първо на едното око, след това на другото, докато пациентът се фокушира върху цел на разстояние или в близост.

(Mоля обърнете внимание:
• Примерите, дадени по-долу, включват само някои видове фория и тропия.
• Някои много малки фории и тропии могат да бъдат пропуснати при наблюдение с просто око.
• Степента на отклонението може да варира в зависимост от скоростта, с която се извършва Cover теста (т.е. продължителността на оклузия и скоростта на закриване/разкриване)).

a) Доказване на тропия (с помощта на едностранен cover test):

- Накрайте пациента да се фокуса върху дадена цел.
- Закрийте дясното око докато наблюдавате лявото око:
 - Ако не се наблюдава движение, лявото око е фиксирано и не се е отклонило.
 - Ако се наблюдава движение на повторно фиксиране, това означава, че око е отклонило:
 - ако движението е в посока надолу – хипертропия;
 - ако движението е нагоре – хипотропия.
- Отстранете окулудера от дясното око.
- Повторете процедурата чрез закриване на лявото око и наблюдаване на дясното око.
 - Ако се наблюдава движение на едното или другото око, това означава, че е идентифицирана тропия, тестът е завършен.
 - Ако не се наблюдава движение, продължете да проверявате за фория (стъпка b) по-долу).

b) Доказване на фория (с помощта на едностранен cover test) (продължение на доказването на тропия по-горе, в случай, че такава не е установена):

- Накирайте пациента да се фокушира върху малка цел.
- Закрийте дясното око в продължение на 1 до 2 секунди.
 - Бързо откройте, като наблюдавате дясното око, докато е открыто:
 - Ако не се наблюдава движение, това означава, че има ортофория или ниско ниво хетерофория.
 - Ако се наблюдава движение на повторно фиксиране, това означава, че има хетерофория:
 - екзофория, ако движението е по посока на носа;
 - езотропия, ако движението е към слепоочието.
 - хиперфория, ако движението е в посока надолу;
 - хипотропия, ако е нагоре.
 - Повторете процедурата, закривайки лявото око и потвърдете наблюдаваното поведение на дясното око.
 - Ако се наблюдава движение на едното или другото око, е идентифицирана фория с поне умерена амплитуда.
 - Ако не се наблюдава движение, има ортофория или ниско ниво на хетерофория (по-малко от 2 до 3 Δ).
Фигура 47: Доказване на тропия и фория с помощта на едностранен Cover Test
2) Измерване и анализ на фория:

След като съществуването на фория е идентифицирано, нейното въздействие трябва да бъде измерено и способността на пациента за компенсиранието й трябва да бъде оценена. Това трябва да се направи както за далечно разстояние, така и за близо.

a) Измерване на амплитудата на фория и тропия

От много възможни методи за измерване на фория, по-долу е описан методът, базиращ се на редуване с Cover test, пробна рамка и приматични лещи. Той има преимущество на измерване на фория в условия на пространствено виждане, при което се поддържа известна фузия. Той може да се използва също като субективно участие във виждането, при което се поддържа известна фузия.

- Намалявайте стойността на призмата, докато пациентът не съобщи, че буквите започват да стават замългени *(точка на замъгляване), а след това, че редът се вижда двоен **(точка на разделяне).*
- Увеличавайте стойността на призмата, докато пациентът не съобщи, че буквите започват да стават замългени *(точка на замъгляване).*
- Намалявайте стойността на призмата, докато пациентът започне отново да вижда един ред от букви *(точка на възстановяване).*
- Някои пациенти не забелязват точката на замъгляване и това може да не се случи при отрицателна свързана конвергенция.
* Някои пациенти не забелязват точката на замъгляване и това може да не се случи при отрицателна свързана конвергенция.
** Ако пациентът не вижда двоено, обърнете внимание на мястото, на което едно от очите губи фиксация.

- Вертикални резерви:
- Накарайте пациента да се фокусира върху вертикален ред с букви.
- Поставете призма с база надолу. Увеличавайте стойността на призмата постепенно, докато пациентът започне да вижда реда двоен, а след това намалявайте призмата, докато пациентът започне да вижда отново един ред.
- Повторете същата последователност, използвайки призма с база нагоре.
- Отбележете точката на разделяне и точката на възстановяване. (В този случай няма точка на замъгляване, тъй като вертикалните движения на конвергенция не стимулират акомодацията.)

Тези измервания на фория и фузионни амплитуди трябва да бъдат направени за далеч и за близо.

b) Анализ на фория:

Важно е да се подчертаеме, че степента на фория е по-малко важен фактор от способността на пациента да я компенсира. С други думи, дори и значителна фория може да не представлява никакво затруднение, ако пациентът има достатъчни фузионни резерви, за да я компенсира комфортно. На практика фория ще бъде лекувана, само ако пациентът страда от симптоми като астенопия, двойно или замъглено виждане, умора, или показва признаци на функционално разстройства като необичайно близко или далечно разстояние на четене. Други симптоми, включително главоболие, болки или зачервени очи, очен дискомфорт, аномалии на зърнене на очите, могат да бъдат изпитвани, особено след продължителни периоди на работа. (Тези симптоми, разбира се, не са специфични за лошо компенсирани фории.)

Този анализ може да се извърши по различни критерии:

Критерий на Пърсифал, който предполага, че конвергенционалните нужди би трябвало да са в средната третина от зоната на ясно единично бинокулярно зрение, както е определена от точката на замъгляване и точката на разделяне.
3) Оценка и анализ на тропия:

Естеството на всяка тропия трябва да се определи чрез един по-задълбочен анализ. Особено важно е да се откритят следните характеристики на тропия:

- Постоянна или периодична: отклонението винаги ли присъства?
- Фиксирана или променлива: винаги ли едно и също око се отклонява?
- Единовременна или не-единовременна: отклонението еднакво ли е във всички посоки на погледа?
- Акомодативна или не-акомодативна: отклонението варира ли при акомодация? (например естропия, причинена от висока степен на некоригирано далекогледство)
- Скоростна или дългогодишна: съществувала ли е в продължение на дълъг период от време или се е появила наскоро?
- Прогресираща или стабилна: (ако е прогресираща, какъв е предполагаемият патологичен произход?)
- Какъв е ъгълът на отклонението? Променя ли се в зависимост от фокусното разстояние?
- Придружена ли е от ексцентрична фиксация или от амблиопия?
- Каква е степента на фузия? Каква е степента на евентуално потискане?

Ъгълът на отклонение може да бъде измерен чрез метода на последователен cover тест (виж по-горе за измерване на фория), за да се определи стойността на всяко призматично предписание, осигурявайки бинокулярния комфорт на пациента.

Тълкуване може да бъде измерен чрез метода на последователен cover тест (виж по-горе за измерване на фория), за да се определи стойността на призмата, която нутрализира движението на рефлексация по време на последователния cover test.

Тропията може да има множество причини и нейното лечение е комплексно. Изключително важно е да се провери внимателно моторното и сензорното бинокулярно зрение на пациента и да се установи причината (причините) за тропия. След като се установи диагнозата, грижата за пациента може да включва рефлексивна корекция, зрители тренировки, предписване на призма, операция или друго лечение, ако причината е от патологичен произход. Ясно е, че лечението на тропия изисква компетентността на професионални специалисти за бинокулярно зрение. Тази тема попада извън обхвата на тази книга.

Като общо правило, зрители тренировки (упражнения, насочени към развитието на фузионните резерви на пациента) са първият избор за лечение, а предписването на призма е запазено като вторично лечение.

Фигура 48: Измерване на фория и фузиона резерви - Критерий на Шеард, който предполага, че "фузионаите резерви, коригиращи форията, би трябвало да бъдат най-малко два пъти по-слаби от форията, за да могат правилно да я компенсират".
Предписване на призма

Когато трябва да се предписва призма, стойността на призмата трябва да бъде точно определена. Като общо правило, винаги се стремете да предписвате минимална стойност на призмата, която комфортно възстановява фузията. Не забравяйте, че в дейността на призма действа като заместител на очите, оставяйки око да се отклонява („оправя“ дефекта) и дори понякога да е „абсорбирала“ от страна на пациента.

С оглед на това, може да е препоръчително да:

a) работите с пробни рамки, а не с фровер, за да дадете възможност на пациента да поддържа периферна фузия
b) предписвате минимална стойност на призмата, която възстановява фузията при наличието на, например, слаб разграничител на фузията (като червения филтър, описан по-долу).

Няколко метода, основаващи се на различни принципи, могат да се използват за определяне на стойността на призмата. Въпреки че тези методи често са предмет на разискване, този документ не е мястото за обсъждане на техните относителни достойнства. Тук е разгледан подробно само един метод, този на червения филтър. Той може да се използва за далечно разстояние и за близо. Процедурата е както следвава:

- Накарайте пациента да се фокусира върху светлина точка.
- Поставете червен филтър пред едното око: пациентът трябва да види две точки светлина, една бяла, а другата червена.
- Обърнете внимание на позицията на бялата светлина в сравнение с червената светлина.
- Поставете призма с подходяща стойност и ориентация пред око без червения филтър. Бялата светлина се придвижа към върха на призмата.
- Увеличавайте стойността на призмата постепенно, докато пациентът започне да вижда само една-единствена точка на светлината. Това усещане трябва да може да бъде задържано от пациента (дайте му време, за да прецени и да коригира зрението си). Запишете тази стойност на призмата.
- Повторете процедурата, поставяйки червен филтър пред другото око и обърнете внимание на стойността на призмата, която се изисква в този случай.
- Изберете за стойност на коригиращата призма по-малката от тези две стойности, която позволява възстановяване на фузията на пациента.

Предписване на призма:
- За предпочитане е по-скоро да се предпиše еквивалентно наклонена призма за едното око, отколкото разделяне на хоризонтална призма за едното око и вертикална призма за другото.
- Разпределете повечето или цялата стойност на призмата на не-доминантното око, за да избегнете или сведете до минимум риска от смущения на зрението на доминантното око от аберациите, предизвикани от призмата.
- Уверете се, че една стойност на призмата е приемлива както за отдалечено, така и за близко зрение. Ако това не е така, отделни предписания за далеч и за близо ще бъдат необходими.
- За предпочитане е стойността на коригиращата призма да се измерва в различни дни или при различни поводи, когато пациентът е по-малко или повече уморен, тъй като измерването може да варира. Временни призми (Френел), (приложени към очилата на пациента) могат да бъдат използвани за изпробване на призмата преди да се определи предписанието.

Много други методи могат да се използват за определяне на стойността на призмата. Те включват методи, основани на измерване на самата фузия, на оценката на противоположния фузиян резерв или на измерване на несъответствие на фиксиране. Всеки от тези методи има своите привърженици и своите противници и никой от тях не е единодушно одобрен. Въпреки това, независимо от продължаващите дискусии, важното е да се намери решение на всички проблеми на бинокулярно зрение, които пациентът може да има, или чрез директно лечение, или чрез отнасяне на случая към очен професионалист, специализиран в тази област.
Сумиране, измерване и определяне на призмата

Официалната единица за измерване на отклонението е призматичен диоптър или см/м, символизиран от гръцката буква Делта - Δ. Призма от 1Δ ще отклонява светлинните лъчи с 1 см на разстояние 1 м.

Друга единица, която понякога се използва, е призматичен градус. Това обикновено е апикалният ъгъл на призмата, но понякога е отклонението, произвождено от призмата, изразено в градуси. За материал с индекс на пречупване 1.50 отклонението в градуси е равно на половината от стойността на апикалния ъгъл на призмата. Призмите в пробните комплекти или призматични линийки все още често се етикетират в тази единица.

За да се преобразува апикалнят ъгъл в градуси до призматичен диоптър, P, използвайте тригонометричното съотношение

\[P = 100 \times \tan \left[\left(n-1 \right) \times a \right] \]

където \(P \) е призматичният ефект (в Δ), \(n \) е индексът на пречупване на материала, а \(a \) е ъгълът на призмата (°), или за по-лесно, използвайте таблицата по-долу (изчисления за \(n = 1.5 \)). Това показва, например, че призма с апикален ъгъл от 10° съответства на призматичен ефект от 8.75Δ и обратно, че призматичен ефект от 7Δ съответства на призма с апикален ъгъл 8°. Основната грешка, извършвана при конвертиране на призматичния градус в призматичен диоптър, е завишаване на около 10 до 15%. Тази грешка е пренебрегима при използване на призми с малък ъгъл (по-малко от 10°) и става значително по-голяма над този диапазон.

<table>
<thead>
<tr>
<th>Апикален ъгъл (в °)</th>
<th>Апикален ефект (Δ)</th>
<th>Апикален ъгъл (в °)</th>
<th>Апикален ефект (Δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>11</td>
<td>9.6</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>12</td>
<td>10.5</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>13</td>
<td>11.4</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>14</td>
<td>12.3</td>
</tr>
<tr>
<td>5</td>
<td>4.3</td>
<td>15</td>
<td>13.2</td>
</tr>
<tr>
<td>6</td>
<td>5.2</td>
<td>16</td>
<td>14.1</td>
</tr>
<tr>
<td>7</td>
<td>6.1</td>
<td>17</td>
<td>14.9</td>
</tr>
<tr>
<td>8</td>
<td>7.0</td>
<td>18</td>
<td>15.8</td>
</tr>
<tr>
<td>9</td>
<td>7.8</td>
<td>19</td>
<td>16.7</td>
</tr>
<tr>
<td>10</td>
<td>8.7</td>
<td>20</td>
<td>17.6</td>
</tr>
</tbody>
</table>

ГРАФИЧЕН МЕТОД ЗА ИЗЧИСЛЯВАНЕ НА СУМАРНА ПРИЗМА

Когато призматичното предписание се състои от хоризонтална и вертикална призма, те могат да бъдат комбинирани в сумарна призма. Сумарната призма се изчислява, по-сконо, като се вземат предвид както сила, така и посоката на призмите, отколкото като сума на вектори. Фигура 49 показва лесно графично решение. Да разгледаме следния пример на предписан призма от 4 Δ с база навътре и 7 Δ с база надолу надясно: застанете фронтално пред пациента, гледайте в дясното око, започнете в началото (в центъра) на графика; начертайте линия по скалата 4 квадрата надясно (назално или с база навътре) (представлява хоризонтална призма). След това, от тази позиция, очертайте линия 7 квадрата надолу (представлява вертикална призма, с база надолу). Достигнатата точка лежи в точката на пресичане на концентричен кръг 8 и права линия, указваща ъгъл от 300°. Така сумарната призма е равна на 8Δ база 300.

Фигура 49: Сумиране на призма – Графично определяне на сумарна призма
Рефракцията, определена по гореписаните методи, не винаги е това, което е финалното предписание. Тук е местото, където "изкусството" на изписване на рефракция влиза в действие след "науката" за рефракция. Има много фактори, които могат да повлияват върху решението на практикуващия по отношение на крайната рецепта и някои от тях са описани по-долу:

- Един от първите елементи, които трябва да се разгледат, е разликата на корекцията между новата и предишната рецепта. Ако значителна промяна е била определена и трябва да се предпише (например, >0.75 DS sphere, >0.50 DC cylinder, >10° axis или >0.75 D addition), пациентите трябва да бъдат предупредени за процеса на адаптация, през който те най-вероятно ще трябва да преминат с новата си корекция. (Един пациент може да приеме, че е по-лесно да "отработи" процеса до пълната корекция на малки стъпки).

- Лешите се произвеждат на стъпки от 0.25D (със стандарти отклонения, но око е биологичен орган, който не се приспособява по този начин. Затова често по време на рефракцията трябва да бъде направен избор между две ограничения на лещи със стъпки 0.25D помежду си. За сферичната компонента на корекцията е препоръчително да се допуска грешка в полза на по-малък минус и повече плюс – Максимум плюс (Минимум минус) за максимална зрелна острота.

- В случай на късогледство при по-млад пациент, който все още има значителна амплитуда на акомодация, свръх-корекцията (свръх-минус) често ще бъде оценена от страна на пациента поради по-голяма контраста, който дава. Може да се спори, че -0.25D свръх-корекция би могла да бъде приемлива в този случай. Вярно е, че свръхкорекция трябва да се избягва поради риска, но евидентията за свръх-корекцията е препоръчителна, за да се избегне чрез свръх-корекция, особено когато очата са ползват за близка работа.

- В случай на далечогледство при по-млад пациент, който все още има значителна амплитуда на акомодация, корекцията може да бъде сложна, тъй като в този случай пациентът вече е привикнал да акомодира и поради това няма да приеме пълната си корекция. От друга страна, това може да бъде на предизвиката поради чрез свръх-корекция, особено когато очата са ползват за далечна работа.

- Не забравяйте, че при окончателния избор на сфера, биконуралният баланс и очната доминанта трябва да се вземат под внимание.
• Обикновено дясното и лявото око са сходни (минимална анизометропия) и осите на цилиндра са приблизително симетрични спрямо вертикалната ос (носа) (направим, R 170, L 10). Ако има някаква значителна анизометропия, трябва да се предвидят предпазващи мерки, които да бъдат предвидени преди новото предписание, необходимото време за адаптация и предпазните мерки, които да бъдат взети в преходния период. Това ще се въведе до минимум всяко безпокойство на пациента и евентуални премествания по време на периода на привикване.

• При пациенти с пресбиопия, корекцията на далечното зрение трябва да е прецизна поради две специфични причини: (i) акомодацията е налице за по-дълго време и така всяка свръх-корекция на миопия или подкорекция на хиперметропия може да бъде компенсирани чрез увеличаване на добавката за близо, което ще има нежелано последствие. Също така, бинаурияния баланс трябва да се спазва както за далеч, така и за близо.

• При пациенти с пресбиопия за корекция на близкото зрение предписването минимална добавка за близо, която се изисква и никога не зависи от дълбочината на зрителното поле. Добавката за близо, която се използва, е необходима, поради по-голямото увеличение, което дават в близост, но тези също така ограничават работното разстояние и намаляват дълбочината на зрителното поле. Предписването на добавка за близо, което е по-силен отколкото е необходимо, ще има нежелани последствия за близките зрители, така както за предиността на зрителното поле. Ако се използва добавка за близо, трябва да се върне приблизително симетрична спрямо вертикалната ос (носа) (минимална анизометропия) и осите на цилиндра са приблизително симетрични спрямо вертикалната ос (носа). Ако има някаква значителна анизометропия, трябва да се предвидят предпазващи мерки, които да бъдат взети в преходния период. Това ще се въведе до минимум всеки безпокойство на пациента и евентуални премествания по време на периода на привикване.

• Като общо правило, ако трябва да се направи избор, дайте приоритет на зрителния комфорт пред зрелната остра. Не забравяйте, че острата е само един елемент от зрението и единствен, който се взема предвид при рефракцията. Други фактори, като например периферно възприятие на форми или движение, също допринасят за зрелния комфорт на пациента. Ето защо рефрактната винаги трябва да бъде подложена на «оценката на зрелното възприятие» на пациента. В края на прегледа, винаги използвайте корекцията в пробната рамка в ситуацията на «реалния живот». Помолете пациентите да направят оценка на своя зрелен комфорт, не само при далечно и близко зрение, но и в ситуация, когато ги чете, към непосредствено заслугичаването ги среда. Преценката на пациента, често осветляваща и от практическо значение, може да се окаже безценно при окончателния избор на корекцията.

• Освен оптичните съображения, изброени по-горе, има много разнообразни ергономични и практически причини, които трябва да се вземат предвид при избора на крайното предписание за пациента. Това е моментът, в който предисторията на случая отново става важна, тъй като, познавайки зрелните нужди на пациента, работната среда, развлечения и други подобни, очните специалисти може най-добре да посъветва пациента за най-подходящите видове рефрактивна корекция, които ще отговарят на тези различни дейности. Никога коригиращи лещи не са съвършени. Различни видове лещи са подходящи за различни видове задачи. Определянето на най-добрата формулировка на рецепта за вашия пациент е част от изкуството на предписването. Обсъдете с него ситуацията и дейностите, за които очилата (или контактните лещи и т.н.) трябва да се използват и обяснете, че различни видове лещи могат да се изискват за различни дейности. Съществуват различни видове лещи за очила: еднофокусни, бифокални, трифокални, прогресивни и лещи за разнообразна професионална употреба, както и много различни видове от всички тези. Съществува избор на материал на лещите, оцветяване, покрития и т.н., които също се взимат под внимание.

Всички тези съображения водят до процеса на вземане на решение за окончателното предписание или предписания.

* Указанията, представени в този раздел, са споделени размисли въз основа на опита на група от практикуващи. Те по никакъв начин нямам за цел да бъдат абсолютни правила за предпиране и, разбира се, винаги могат да бъдат предмет на дискусии.
Заключение

Рефракцията е наука, но и изкуство. Тя е, преди всичко, техниката за определяне и коригиране на рефрактивни грешки на окото. Освен това, тя е и изкуството да знаете кое предписание да изберете, за да предложите на пациентите както възможно най-доброто зрение, така и възможно най-добрния комфорт. Ако техниката на рефракция може да се преподава, изкуството на предписването на рефракция може да се придобие само с практика и клиничен опит.

Помагалото “Практическа рефракция”, част от поредицата от трудове по Очна оптика, е предназначена да сподели основните правила на една техника на рефракция. Подходът е умилчено практичен, като теоретичните съображения са ограничени до минимум. От само себе си се подразбира, че една тъй обширна тема като тази не може да бъде разглеждана цялостно в един толкова кратък документ. Затова съветваме читателите да се обрънат към многото налични публикации, посветени на рефракция и преглед на зрението, за да задълбочат своите познания. Въпреки, че са предложени няколко основни насоки по отношение на предписанието, нищо, освен редовната практика, не може да даде възможност на очния професионалист да придобие не само техническите умения, необходими за практикуване на рефракция, но и опита и клиничната прецена, нужна, за да правите най-добрата избор на предписание за всеки пациент.

Надяваме се, че този труд ще помогне на очните специалисти в ежедневната им практика на рефракция. Преди всичко се надяваме, че той ще им даде възможност да предписват най-добрите възможни оптични корекции, така че да помогнат на пациентите си винаги «да виждат по-добре, за да живеят по-добре»!